Lip Print Pattern Extraction Using Top-Hat Transform

  • Lukasz SmackiEmail author
  • Jacek Luczak
  • Zygmunt Wrobel
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 403)


Lip print examination is a very difficult and complex task even for modern forensic departments. Computer systems that will assist a crime scene expert in identification of this kind of evidence are very desired in the forensic science community. Unfortunately, such softwares do not exist as methods of automatic lip print identification are still insufficiently developed. This paper presents an original method of lip print pattern extraction that can be used as a preprocessing stage in the lip print identification process. Research shows that the proposed method increased lip print identification accuracy for all tested template matching algorithms. After further improvements, our method can be used as a base for creating a personal identification system based on lip prints.


Cheiloscopy Lip print Pattern extraction Top-hat transform Forensic science 



Lukasz Smacki is a scholarship holder of the DoktoRIS project cofunded by the European Union under the European Social Fund. Jacek Luczak is supported by the Forszt project cofunded by the European Union under the European Social Fund.


  1. 1.
    Siegel, J., Saukko, P., Knupfer, G.: Encyclopedia of Forensic Science, pp. 358–362. Academic Press, London (2000)Google Scholar
  2. 2.
    Suzuki, K., Tsuchihashi, Y.: Personal identification by means of lip prints. J. Forensic Med. 17, 52–57 (1970)Google Scholar
  3. 3.
    Tsuchihashi, Y.: Studies on personal identification by means of lip prints. Forensic Sci. 3, 233–248 (1974)CrossRefGoogle Scholar
  4. 4.
    Kasprzak, J.: Possibilities of cheiloscopy. Forensic Sci. Int. 46, 145–151 (1990)CrossRefGoogle Scholar
  5. 5.
    Kasprzak, J.: Cheiloscopy, Forensic Science International, pp. 358–362 (2000)Google Scholar
  6. 6.
    Hirth, L., Gottsche, H., Goedde, H.W.: Lip prints—variability and genetics. Natl Libr. Med. 30, 47–62 (1975)Google Scholar
  7. 7.
    Sivapathasundharam, B., Prakash, P.A., Sivakumar, G.: Lip prints (Cheiloscopy). Indian J. Dental Res. 12, 234 (2001)Google Scholar
  8. 8.
    Coward, R.C.: The stability of lip pattern characteristics over time. J. Forensic Odontostomatol. 25(2), 40–56 (2007)Google Scholar
  9. 9.
    Eldomiaty, M.A., Anwar, R.I., Algaidi, S.A.: Stability of lip-print patterns: A longitudinal study of Saudi females. J. Forensic Legal Med. 22, 154–158 (2014)CrossRefGoogle Scholar
  10. 10.
    Popa, M.F., Stefanescu, C., Corici, P.D.: Medical-legal identification methods with the aid of cheiloscopy. Roman. J. Legal Med. 21, 215–218 (2013)CrossRefGoogle Scholar
  11. 11.
    The People of the State of Illinois, Plaintiff-Appellee, v. Lavelle L. Davis, Defendant-Appellant,
  12. 12.
    Newton, M.: The Encyclopedia of Crime Scene Investigation, p. 42 (2008)Google Scholar
  13. 13.
    Castello, A., et al.: Luminous lip-prints as criminal evidence. Forensic Sci. Int. 155, 185–187 (2005)CrossRefGoogle Scholar
  14. 14.
    Sharma, P., Saxwna, S., Rathod, V.: Comparative reliability of cheiloscopy and palatoscopy in human identification. Indian J. Dental Res. 20(4), 453–457 (2009)CrossRefGoogle Scholar
  15. 15.
    Gupta, S., Gupta, K., Gupta, O.P.: A study of morphological patterns of lip prints in relation to gender of North Indian population. J. Oral Biol. Craniofac. Res. 1(1), 12–16 (2011)CrossRefGoogle Scholar
  16. 16.
    Eldomiaty, M.A., Al-gaidi, S.A., Elayat, A.A., Safwat, M.D.E., Galal, S.A.: Morphological patterns of lip prints in Saudi Arabia at Almadinah Almonawarah province. Forensic Sci. Int. 200, 179.e1–179.e9 (2010)Google Scholar
  17. 17.
    Utsuno, H., et al.: Preliminary study of post mortem identification using lip prints. Forensic Sci. Int. 149(2–3), 129–132 (2005)CrossRefGoogle Scholar
  18. 18.
    Kim, J.O., et al.: Lip print recognition for security systems by multi resolution architecture. Future Gener. Comput. Syst. 20, 295–301 (2004)CrossRefGoogle Scholar
  19. 19.
    Sharma, P., Deo, S., Venkateshan, S., Vaish, A.: Lip print recognition for security systems: an up-coming biometric solution. In: Tsihrintzis George, A., Virvou, M., Jain Lakhmi, C., Howlett Robert, J. (eds.) IIMSS 2011, vol. 11, pp. 347–359. SIST Springer, Heidelberg (2011)Google Scholar
  20. 20.
    Bakshi, S., Raman, R., Sa, P.K.: Lip pattern recognition based on local feature extraction. In: India Conference (INDICON), pp. 1–4 (2011)Google Scholar
  21. 21.
    Gomez, E., Travieso, C.M., Briceno, J.C., Ferrer, M.A.: Biometric identification system by lip shape. In: Security Technology, pp. 39–42 (2002)Google Scholar
  22. 22.
    Choras, M.: The lip as a biometric. Pattern Anal. Appl. 13(1), 105–112 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Reshmi, M.P., Karthick, V.J.: Biometric identification system using lips. Int. J. Sci. Res. (IJSR) 2(4), 304–307 (2013)Google Scholar
  24. 24.
    Faraj, M., Bigun, J.: Audio-visual person authentication using lip-motion from orientation maps. Pattern Recognit. Lett. 28(11), 1368–1382 (2007)CrossRefGoogle Scholar
  25. 25.
    Cetingul, H.E., Erzin, E., Yemez, Y., Tekalp, A.M.: Multimodal speaker/speech recognition using lip motion, lip texture and audio. Signal Process. 86(12), 3549–3558 (2006)CrossRefzbMATHGoogle Scholar
  26. 26.
    Wanga, S.L., Liewb, W.C.: Physiological and behavioral lip biometrics: A comprehensive study of their discriminative power. Pattern Recognit. 45(9), 3328–3335 (2012)CrossRefGoogle Scholar
  27. 27.
    Smacki, L., Porwik, P., Tomaszycki, K., Kwarcinska, S.: Lip print recognition using the Hough transform. J. Med. Inf. Technol. 14, 31–38 (2010)Google Scholar
  28. 28.
    Smacki, L., Wrobel, K.: Lip print recognition based on mean differences similarity measure. In: Burduk, R., Kurzyński, M., Woźniak, M., Żołnierek, A. (eds.) Computer Recognition Systems 4, vol. 95, pp. 41–49. AISC Springer, Heidelberg (2011)CrossRefGoogle Scholar
  29. 29.
    Smacki, L., Wrobel, K., Porwik, P.: Lip print recognition based on the DTW algorithm. In: Proceedings of the Third World Congress on Nature and Biologically Inspired Computing, Salamanca, Spain, pp. 601–606 (2011)Google Scholar
  30. 30.
    Bhattacharjee, S., Arunkumar, S., Bandyopadhyay, S.K.: Personal identification from lip-print features using a statistical model. Int. J. Comput. Appl. 55(13), 30–34 (2012)Google Scholar
  31. 31.
    Wrobel, K., Doroz, R., Palys, M.: A method of lip print recognition based on sections comparison. In: International Conference on Biometrics and Kansei Engineering (ICBAKE 2013), Tokyo, Japan, pp. 47–52 (2013)Google Scholar
  32. 32.
    Smacki, L.: Latent lip print identification using fast normalized cross-correlation. In: International Conference on Biometrics and Kansei Engineering (ICBAKE 2013), Tokyo, Japan, pp. 189–192 (2013)Google Scholar
  33. 33.
    Ware, C.: Information Visualization: Perception for Design (2004)Google Scholar
  34. 34.
    Huang, T., Yang, G., Tang, G.: A fast two-dimensional median filtering algorithm. Acoust. Speech Signal Process. 27(1), 13–18 (1979)CrossRefGoogle Scholar
  35. 35.
    Jain, A.: Fundamentals of Digital Image Processing, Chap. 7, p. 235 (1989)Google Scholar
  36. 36.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Shapiro, L., Stockman, G.: Computer Vision (2002)Google Scholar
  38. 38.
    Pratt, W.K.: Digital Image Processing (1991)Google Scholar
  39. 39.
    Dougherty, E.: An Introduction to Morphological Image Processing (1992)Google Scholar
  40. 40.
    Haralick, T.M., Shapiro, L.G.: Computer and Robot Vision, vol. 1 (1992)Google Scholar
  41. 41.
    Template Matching - OpenCV documentation,

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biomedical Computer SystemsUniversity of SilesiaSosnowiecPoland

Personalised recommendations