Advertisement

A Novel Similarity Measure Between Intuitionistic Fuzzy Sets for Constructing Intuitionistic Fuzzy Tolerance

  • Janusz KacprzykEmail author
  • Dmitri A. Viattchenin
  • Stanislau Shyrai
  • Eulalia Szmidt
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 401)

Abstract

This paper deals with the problem of constructing intuitionistic fuzzy tolerance from a family of intuitionistic fuzzy sets. A method to calculate the intuitionistic fuzzy tolerance degrees between intuitionistic fuzzy sets on the basis of the Euclidean distance is proposed. An illustrative example used to compare the proposed similarity measure with other similarity measures and an application of the proposed similarity measure to clustering problem is considered. Preliminary conclusions are formulated.

Keywords

Intuitionistic fuzzy set Intuitionistic fuzzy tolerance Similarity measure Clustering 

References

  1. 1.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Atanassov, K.T.: Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  3. 3.
    Atanassov, K.T.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  4. 4.
    Xu, Z.: Intuitionistic Fuzzy Aggregation and Clustering. Springer, Berlin (2013)zbMATHGoogle Scholar
  5. 5.
    Szmidt, E.: Distances and Similarities in Intuitionistic Fuzzy Sets. Springer, Berlin (2014)CrossRefzbMATHGoogle Scholar
  6. 6.
    Wang, Z., Xu, Z., Liu, S., Tang, J.: A netting clustering analysis method under intuitionistic fuzzy environment. Appl. Soft Comput. 11(8), 5558–5564 (2011)CrossRefGoogle Scholar
  7. 7.
    Viattchenin, D.A.: A method of construction of intuitionistic fuzzy tolerances based on a similarity measure between intuitionistic fuzzy sets. In: Atanassov K.T. et al. (Eds.) New Developments in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics, Vol. I: Foundations, pp. 191–202, IBS PAN– SRI PAS, Warsaw (2012)Google Scholar
  8. 8.
    Burillo, P., Bustince, H.: Intuitionistic fuzzy relations (Part I). Mathw. Soft Comput. 2(1), 5–38 (1995)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Viattchenin, D.A., Shyrai, S.: Intuitionistic heuristic prototype-based algorithm of possibilistic clustering. Commun. Appl. Electron. 1(8), 30–40 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Janusz Kacprzyk
    • 1
    • 3
    Email author
  • Dmitri A. Viattchenin
    • 2
  • Stanislau Shyrai
    • 2
  • Eulalia Szmidt
    • 1
    • 3
  1. 1.Systems Research Institute Polish Academy of SciencesWarsawPoland
  2. 2.Department of Software Information Technology, Belarusian State University of Informatics and Radio-ElectronicsMinskBelarus
  3. 3.WIT-Warsaw School of Information Technology WarsawWarsawPoland

Personalised recommendations