Combining Syntactic and Semantic Evidence for Improving Matching over Linked Data Sources

  • Klitos ChristodoulouEmail author
  • Alvaro A. A. Fernandes
  • Norman W. Paton
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9418)


In the context of Linked Data (LD) sources, the ability to traverse links and retrieve further information can be exploited to harvest semantic annotations. Such annotations can, in turn, underpin the inference of semantic correspondences between sources. This paper shows that using semantic annotations as additional evidence of equivalence between schematic representations of LD sources can improve upon the prevalent, purely syntactic approaches. The paper both describes the construction of probabilistic models that yield degrees of belief on the equivalence of the real-world concepts represented by the data and shows how these models are crucial in underpinning a Bayesian approach to assimilating both syntactic evidence (in the form of similarity scores derived by string-based matchers) and semantic evidence (in the form of semantic annotations stemming from LD vocabularies) of equivalence. The paper presents an empirical evaluation of the techniques described. The main finding is confirmation that, with respect to equivalence judgements made by human experts, the use of the contributed techniques incurs significantly fewer discrepancies than purely syntactic approaches.


Probabilistic matching Bayesian updating Linked data 


  1. 1.
    Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching with coma++. In: SIGMOD Conference, pp. 906–908 (2005)Google Scholar
  2. 2.
    Bernstein, P., Madhavan, J., Rahm, E.: Generic schema matching, ten years later. Proc. VLDB Endowment 4(11), 695–701 (2011)Google Scholar
  3. 3.
    Bowman, A.W., Azzalini, A.: Applied Smoothing Techniques for Data Analysis : The Kernel Approach with S-Plus Illustrations: The Kernel Approach with S-Plus Illustrations. OUP, Oxford (1997)zbMATHGoogle Scholar
  4. 4.
    Christodoulou, K., Paton, N.W., Fernandes, A.A.A.: Structure inference for linked data sources using clustering. In: EDBT/ICDT Workshops, pp. 60–67 (2013)Google Scholar
  5. 5.
    de Vaus, D.: Surveys in Social Research. Research methods/Sociology. Taylor & Francis (2002)Google Scholar
  6. 6.
    Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. Int. J. Forecast. (IJF) 22(4), 679–688 (2006)CrossRefGoogle Scholar
  7. 7.
    Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology alignment for linked open data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 402–417. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  8. 8.
    Marie, A., Gal, A.: Managing uncertainty in schema matcher ensembles. In: Prade, H., Subrahmanian, V.S. (eds.) SUM 2007. LNCS (LNAI), vol. 4772, pp. 60–73. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  9. 9.
    Papoulis, A.: Probability, Random Variables and Stochastic Processes, 3rd edn. McGraw-Hill Companies, New York (1991) Google Scholar
  10. 10.
    Peukert, E., Maßmann, S., König, K.: Comparing similarity combination methods for schema matching. GI Jahrestagung 1, 692–701 (2010)Google Scholar
  11. 11.
    Polleres, A., Hogan, A., Harth, A., Decker, S.: Can we ever catch up with the web? Semantic Web 1(1–2), 45–52 (2010)Google Scholar
  12. 12.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB J. 10(4), 334–350 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Sabou, M., d’Aquin, M., Motta, E.: Exploring the semantic web as background knowledge for ontology matching. J. Data Semant. 11, 156–190 (2008)Google Scholar
  14. 14.
    Sabou, M., d’Aquin, M., Motta, E.: SCARLET: semantiC relAtion discoveRy by harvesting onLinE onTologies. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 854–858. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  15. 15.
    Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)CrossRefGoogle Scholar
  16. 16.
    Spragins, J.: A note on the iterative application of bayes’ rule. IEEE Trans. Inf. Theor. 11(4), 544–549 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Klitos Christodoulou
    • 1
    Email author
  • Alvaro A. A. Fernandes
    • 1
  • Norman W. Paton
    • 1
  1. 1.School of Computer ScienceUniversity of ManchesterManchesterUK

Personalised recommendations