Advertisement

Integrating Simplified Inverse Representation and CRC for Face Recognition

  • Yingnan ZhaoEmail author
  • Xiangjian He
  • Beijing Chen
  • Xiaoping Zhao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9426)

Abstract

The representation based classification method (RBCM) has attracted much attention in the last decade. RBCM exploits the linear combination of training samples to represent the test sample, which is then classified according to the minimum reconstruction residual. Recently, an interesting concept, Inverse Representation (IR), is proposed. It is the inverse process of conventional RBCMs. IR applies test samples’ information to represent each training sample, and then classifies the training sample as a useful supplement for the final classification. The relative algorithm CIRLRC, integrating IR and linear regression classification (LRC) by score fusing, shows superior classification performance. However, there are two main drawbacks in CIRLRC. First, the IR in CIRLRC is not pure, because the test vector contains some training sample information. The other is the computation inefficiency because CIRLRC should solve C linear equations for classifying the test sample respectively, where C is the number of the classes. Therefore, we present a novel method integrating simplified IR (SIR) and collaborative representation classification (CRC), named SIRCRC, for face recognition. In SIRCRC, only test sample information is fully used in SIR, and CRC is more efficient than LRC in terms of speed, thus, one linear equation system is needed. Extensive experimental results on face databases show that it is very competitive with both CIRLRC and the state-of-the-art RBCM.

Keywords

Face recognition Inverse representation Collaborate recognition classification 

Notes

Acknowledgments

This work is supported in part by the Priority Academic Program Development of Jiangsu Higher Education Institutions, Natural Science Foundation of China (No. 61572258, No. 61103141 and No. 51405241) and Student Innovation Training Program of NUIST(No. 201410300190 and No. 201410300178).

References

  1. 1.
    Li, Y., Zhu, L., Bi, N., Xu, Y.: Sparse representation for brain signal processing: a tutorial on methods and applications. Sig. Process. 31(3), 96–106 (2014)CrossRefGoogle Scholar
  2. 2.
    Boufounos, P., Kutyniok, G., Rauhut, H.: Sparse recovery from combined fusion frame measurements. IEEE Trans. Inf. Theor. 57(6), 3864–3876 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)CrossRefGoogle Scholar
  4. 4.
    Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Proc. 19(11), 2861–2873 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans. Image Proc. 17(1), 53–69 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Mei, X., Ling, H.: Robust visual tracking and vehicle classification via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2259–2272 (2011)CrossRefGoogle Scholar
  7. 7.
    Jia, X., Lu, H., Yang, M.-H.: Visual tracking via adaptive structural local sparse appearance model. In: IEEE Conference on Computer vision and pattern recognition (CVPR), pp. 1822–1829 (2012)Google Scholar
  8. 8.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)CrossRefGoogle Scholar
  9. 9.
    Zhang, D., Yang, M., Feng, X.: Sparse representation or collaborative representation: which helps face recognition?. In: IEEE International Conference on Computer Vision (ICCV), pp. 471–478 (2011)Google Scholar
  10. 10.
    Xu, Y., Zhang, D., Yang, J., Yang, J.-Y.: A two-phase test sample sparse representation method for use with face recognition. IEEE Trans. Circuits Syst. Video Technol. 21(9), 1255–1262 (2011)CrossRefGoogle Scholar
  11. 11.
    Yang, M., Zhang, D., Shenlong, W.: Relaxed collaborative representation for pattern classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2224–2231 (2012)Google Scholar
  12. 12.
    Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2106–2112 (2010)CrossRefGoogle Scholar
  13. 13.
    Xu, Y., Fan, Z., Qiu, M., Zhang, D., Yang, J.-Y.: A sparse representation method of bimodal biometrics and palmprint recognition experiments. Neurocomputing 103, 164–171 (2013)CrossRefGoogle Scholar
  14. 14.
    Naseem, I., Togneri, R., Bennamoun, M.: Sparse representation for ear biometrics. In: Bebis, G., et al. (eds.) ISVC 2008, Part II. LNCS, vol. 5359, pp. 336–345. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Shekhar, S., Patel, V.M., Nasrabadi, N.M., Chellappa, R.: Joint sparse representation for robust multimodal biometrics recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 113–126 (2014)CrossRefGoogle Scholar
  16. 16.
    Pillai, J.K., Patel, V.M., Chellappa, R., Ratha, N.K.: Secure and robust iris recognition using random projections and sparse representations. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1877–1893 (2011)CrossRefGoogle Scholar
  17. 17.
    Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1794–1801 (2009)Google Scholar
  18. 18.
    Yang, M., Zhang, D., Yang, J.: Robust sparse coding for face recognition. In: Computer Vision and Pattern Recognition (CVPR), pp. 625–632 (2011)Google Scholar
  19. 19.
    Lyu, Q., Lin, Z., She, Y., Zhang, C.: A comparison of typical l p minimization algorithms. Neurocomputing 119, 413–424 (2013)CrossRefGoogle Scholar
  20. 20.
    Xu, Z., Chang, X., Fengmin, X., Zhang, H.: l 1/2 regularization: a thresholding representation theory and a fast solver. IEEE Trans. Neural Networks Learning Syst. 23(7), 1013–1027 (2012)CrossRefGoogle Scholar
  21. 21.
    Guo, S., Wang, Z., Ruan, Q.: Enhancing sparsity via l p minimization for robust face recognition. Neurocomputing 99, 592–602 (2013)CrossRefGoogle Scholar
  22. 22.
    Zhang, Z., Xu, Y., Yang, J., Li, X., Zhang, D.: A survey of sparse representation: algorithms and applications. doi: 10.1109/ACCESS.2015.2430359
  23. 23.
    Xu, Y., Li, X., Yang, J., Lai, Z., Zhang, D.: Integrating conventional and inverse representation for face recognition. IEEE Trans. Cybernetics 44(10), 1738–1746 (2014)CrossRefGoogle Scholar
  24. 24.
  25. 25.
  26. 26.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Yingnan Zhao
    • 1
    • 2
    • 3
    Email author
  • Xiangjian He
    • 3
  • Beijing Chen
    • 1
    • 2
  • Xiaoping Zhao
    • 1
    • 2
  1. 1.Jiangsu Engineering Center of Network MonitoringNanjing University of Information Science & TechnologyNanjingChina
  2. 2.School of Computer & SoftwareNanjing University of Information Science & TechnologyNanjingChina
  3. 3.School of Computing and CommunicationsUniversity of Technology SydneySydneyAustralia

Personalised recommendations