Embryological Basis of Congenital Anomalies

  • Srinivas Annavarapu


The normal developmental processes hold the key to our understanding of the biological basis of congenital anomalies. It is remarkable to note how a single fertilized cell, the zygote, undergoes sequential cell divisions followed by coordinated cell proliferation, migration and differentiation, to create something as intricately complex as a human foetus [1]. Interestingly, the various stages of the human embryonic development (see Table 6.1) share homologous developmental trajectories with other vertebrates [1].


  1. 1.
    Moore KL, Persaud TVN, Torche MG. The developing human: clinically oriented embryology. 10th ed. Philadelphia: Elsevier; 2015.Google Scholar
  2. 2.
    Gilbert-Barness E, Debich-Spicer D. The human embryo and growth disorganization. In: Gilbert-Barness E, Debich-Spicer D, editors. Embryo and fetal pathology: color atlas with ultrasound correlation. Cambridge: Cambridge University press; 2004. p. 1–22.CrossRefGoogle Scholar
  3. 3.
    Maitra A. Genetic and pediatric diseases. In: Kumar V, Abbas AK, Aster JC, editors. Robbins basic pathology 9e. Philadelphia: Elsevier; 2013. p. 243–98.Google Scholar
  4. 4.
    Ochando I, Vidal V, Gascón J, Acién M, Urbano A, Rueda J. Prenatal diagnosis of X-linked hydrocephalus in a family with a novel mutation in L1CAM gene. J Obstet Gynaecol. 2016;36(3):403–5.CrossRefGoogle Scholar
  5. 5.
    Yoon PW, Freeman SB, Sherman SL, Taft LF, Gu Y, Pettay D, Flanders WD, Khoury MJ, Hassold TJ. Advanced maternal age and the risk of Down syndrome characterized by the meiotic stage of chromosomal error: a population-based study. Am J Hum Genet. 1996;58(3):628–33.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Boyarchuk O, Volyanska L, Dmytrash L. Clinical variability of chromosome 22q11.2 deletion syndrome. Cent Eur J Immunol. 2017;42(4):412–7.CrossRefGoogle Scholar
  7. 7.
    Peters J. The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet. 2014;15(8):517–30.CrossRefGoogle Scholar
  8. 8.
    Allen VM, Armson BA, Committee G, Committee MFM. Teratogenicity associated with pre-existing and gestational diabetes. J Obstet Gynaecol Can. 2007;29(11):927–34.CrossRefGoogle Scholar
  9. 9.
    Sulik KK. Fetal alcohol spectrum disorder: pathogenesis and mechanisms. Handb Clin Neurol. 2014;125:463–75.CrossRefGoogle Scholar
  10. 10.
    Opitz JM. The developmental field concept. Am J Med Genet. 1985;21(1):1–11.CrossRefGoogle Scholar
  11. 11.
    Solomon BD, Bear KA, Kimonis V, de Klein A, Scott DA, Shaw-Smith C, Tibboel D, Reutter H, Giampietro PF. Clinical geneticists views of VACTERL/VATER association. Am J Med Genet A. 2012;158A(12):3087–100.CrossRefGoogle Scholar
  12. 12.
    Noramly S, Pisenti J, Abbott U, Morgan B. Gene expression in the limbless mutant: polarized gene expression in the absence of Shh and an AER. Dev Biol. 1996;179(2):339–46.CrossRefGoogle Scholar
  13. 13.
    Geister KA, Camper SA. Advances in skeletal dysplasia genetics. Annu Rev Genomics Hum Genet. 2015;16:199–227.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Srinivas Annavarapu
    • 1
  1. 1.Department of Cellular PathologyRoyal Victoria InfirmaryNewcastle-Upon-TyneUK

Personalised recommendations