A Bipolar View on Medical Diagnosis in OvaExpert System

  • Anna Stachowiak
  • Krzysztof Dyczkowski
  • Andrzej Wójtowicz
  • Patryk Żywica
  • Maciej Wygralak
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 400)


In the paper we present OvaExpert - a unique tool for supporting gynecologists in the diagnosis of ovarian tumor, combining classical diagnostic scales with modern methods of machine learning and soft computing. A distinguishing feature of the system is its comprehensiveness, which makes it usable at any stage of a diagnostic process. We gather all the results and solutions making up the system, some of which were described in our other publications, to provide an overall picture of OvaExpert and its capabilities. A special attention is paid to a property of supporting uncertainty modeling and processing, that is an essential part of the system.


Supporting medical diagnosis Incomplete data Bipolar information Uncertainty Aggregation Interval-valued fuzzy sets Atanassov’s intuitionistic fuzzy sets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alcázar, J.L., Mercé, L.T., et al.: A new scoring system to differentiate benign from malignant adnexal masses. Obstetrical & Gynecological Survey 58(7), 462–463 (2003)CrossRefGoogle Scholar
  2. 2.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Springer (1999)Google Scholar
  3. 3.
    De, S.K., Biswas, R., Roy, A.R.: An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets and Systems 117(2), 209–213 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Dyczkowski, K., Wójtowicz, A., Żywica, P., Stachowiak, A., Moszyński, R., Szubert, S.: An intelligent system for computer-aided ovarian tumor diagnosis. In: Filev, D., et al. (eds.) IS 2014, Volume 2: Tools, Architectures, Systems, Applications. AISC, vol. 323, pp. 335–343. Springer, Heidelberg (2015)Google Scholar
  5. 5.
    Han, P.K., Klein, W.M., Arora, N.K.: Varieties of uncertainty in health care a conceptual taxonomy. Medical Decision Making 31(6), 828–838 (2011)CrossRefGoogle Scholar
  6. 6.
    Jacobs, I., Oram, D., et al.: A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. BJOG: An International Journal of Obstetrics & Gynaecology 97(10), 922–929 (1990)CrossRefGoogle Scholar
  7. 7.
    Moszyński, R., Żywica, P., et al.: Menopausal status strongly influences the utility of predictive models in differential diagnosis of ovarian tumors: An external validation of selected diagnostic tools. Ginekologia Polska 85(12), 892–899 (2014)CrossRefGoogle Scholar
  8. 8.
    Stachowiak, A., Żywica, P., Dyczkowski, K., Wójtowicz, A.: An interval-valued fuzzy classifier based on an uncertainty-aware similarity measure. In: Angelov, P., et al. (eds.) IS 2014, Volume 1: Mathematical Foundations, Theory, Analyses. AISC, vol. 322, pp. 741–751. Springer, Heidelberg (2015)Google Scholar
  9. 9.
    Szmidt, E., Kacprzyk, J.: An intuitionistic fuzzy set based approach to intelligent data analysis: an application to medical diagnosis. In: Abraham, A., Jain, L.C., Kacprzyk, J. (eds.) Recent Advances in Intelligent Paradigms and Applications. STUDFUZZ, vol. 113, pp. 57–70. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Szpurek, D., Moszyński, R., et al.: An ultrasonographic morphological index for prediction of ovarian tumor malignancy. European Journal of Gynaecological Oncology 26(1), 51–54 (2005)Google Scholar
  11. 11.
    Timmerman, D., Bourne, T.H., et al.: A comparison of methods for preoperative discrimination between malignant and benign adnexal masses: the development of a new logistic regression model. American Journal of Obstetrics and Gynecology 181(1), 57–65 (1999)CrossRefGoogle Scholar
  12. 12.
    Timmerman, D., Testa, A.C., et al.: Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the International Ovarian Tumor Analysis Group. Journal of Clinical Oncology 23(34), 8794–8801 (2005)CrossRefGoogle Scholar
  13. 13.
    Van Holsbeke, C., Van Calster, B., et al.: External validation of mathematical models to distinguish between benign and malignant adnexal tumors: a multicenter study by the International Ovarian Tumor Analysis Group. Clinical Cancer Research 13(15), 4440–4447 (2007)CrossRefGoogle Scholar
  14. 14.
    Wygralak, M.: Intelligent Counting under Information Imprecision: Applications to Intelligent Systems and Decision Support. Springer (2013)Google Scholar
  15. 15.
    Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning—i. Information Sciences 8(3), 199–249 (1975)CrossRefMathSciNetzbMATHGoogle Scholar
  16. 16.
    Zadeh, L.A.: Fuzzy logic and approximate reasoning. Synthese 30(3–4), 407–428 (1975)CrossRefzbMATHGoogle Scholar
  17. 17.
    Żywica, P., Wójtowicz, A., Stachowiak, A., Dyczkowski, K.: Improving medical decisions under incomplete data using interval-valued fuzzy aggregation. In: Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology. Atlantis Press (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Anna Stachowiak
    • 1
  • Krzysztof Dyczkowski
    • 1
  • Andrzej Wójtowicz
    • 1
  • Patryk Żywica
    • 1
  • Maciej Wygralak
    • 1
  1. 1.Faculty of Mathematics and Computer ScienceAdam Mickiewicz University in PoznańPoznańPoland

Personalised recommendations