Advertisement

Merging Bottom-Up and Top-Down Knowledge Graphs for Intuitive Knowledge Browsing

  • Gwendolin WilkeEmail author
  • Sandro Emmenegger
  • Jonas Lutz
  • Michael Kaufmann
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 400)

Abstract

The Lokahi Enterprise Knowledge Browser provides an intuitive and flexible way to query a company’s intranet knowledge. In addition to conventional search capabilities, it allows the user to browse through a semi-automatically generated knowledge map that visualizes intranet knowledge as a network/graph structure of semantic relations that are extracted top-down from structured documents, as well as bottom-up from unstructured documents. This paper describes the underlying fuzzy graph data structure, the method for extracting concepts and associations from text documents, and the merging of the resulting data structure with a predefined enterprise ontology.

Keywords

Enterprise search Knowledge browsing Knowledge map Knowledge graph Fuzziness Association rule mining Connectivism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Jajodia, P.B.S. (ed.) Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, vol. 2. ACM, New York (1993)Google Scholar
  2. 2.
    Biezunski, M.: Introduction to topic mapping. In: SGML Europe GCA Conference (1997)Google Scholar
  3. 3.
    Chen, P.P.S.: The entity-relationship model - toward a unified view of data. ACM Trans. Database Syst 1(1), 9–36 (1976)CrossRefGoogle Scholar
  4. 4.
    Emmenegger, S., Laurenzini, E., Thönssen, B.: Improving supply-chain-management based on semantically enriched risk descriptions. In: Proceedings of the International Conference on Knowledge Management and Information Sharing, KMIS 2012, pp. 70–80 (2012)Google Scholar
  5. 5.
    Hawthorne, J.: Inductive logic. In: Stanford Encyclopedia of Philosophy. The Metaphysics Research Lab, Stanford University, Stanford (2008)Google Scholar
  6. 6.
    Hinkelmann, K., Merelli, E., Thönssen, B.: The role of content and context in enterprise repositories. In: Proceedings of the 2nd International Workshop on Advanced Enterprise Architecture and Repositories, AER 2010 (2010)Google Scholar
  7. 7.
    Kang, D., Lee, J., Choi, S., Kim, K.: An ontology-based enterprise architecture. Expert Syst. Appl. 37(2), 1456–1464 (2010). http://dx.doi.org/10.1016/j.eswa.2009.06.073
  8. 8.
    Kaufmann, M.: Inductive Fuzzy Classification in Marketing Analytics. Doctoral Thesis, Université de Fribourg, Fribourg, Switzerland (2012)Google Scholar
  9. 9.
    Kaufmann, M., Wilke, G., Portmann, E., Hinkelmann, K.: Combining bottom-up and top-down generation of interactive knowledge maps for enterprise search. In: Buchmann, R., Kifor, C.V., Yu, J. (eds.) KSEM 2014. LNCS, vol. 8793, pp. 186–197. Springer, Heidelberg (2014) Google Scholar
  10. 10.
    Knauer, U.: Algebraic Graph Theory: Morphisms, Monoids and Matrices, 1st edn. De Gruyter, Berlin (2011) CrossRefGoogle Scholar
  11. 11.
    Martin, A., Emmenegger, S., Wilke, G.: Integrating an enterprise architecture ontology in a case-based reasoning approach for project knowledge. In: Proceedings of the First Enterprise Systems Conference (ES 2013) (2013)Google Scholar
  12. 12.
    Masterman, M.: Semantic message detection for machine translation, using an interlingua. In: Proc. 1961 International Conf. on Machine Translation, pp. 438–475 (1961)Google Scholar
  13. 13.
    Novak, J.D., Gowin, D.B.: Learning How to Learn. Cornell University (1984). ISBN: 9780521319263Google Scholar
  14. 14.
    Peirce, C.S.: On junctures and fractures in logic. In: Writings of Charles S. Peirce: 1879–1884, p. 391. Harvard University Press (1882)Google Scholar
  15. 15.
    Portmann, E., Kaufmann, M.A., Graf, C.: A distributed, semiotic-inductive, and human-oriented approach to web-scale knowledge retrieval. In: Proceedings of the 2012 International workshop on Web-scale knowledge Representation, Retrieval and Reasoning, pp. 1–8. ACM, New York (2012)Google Scholar
  16. 16.
    Quillian, M.R.: Semantic Memory. Ph.D. thesis, Carnegie Institute of Technology (now CMU) (1966), abridged version in Minsky, pp. 227–270 (1968)Google Scholar
  17. 17.
    Shadbolt, N.: Knowledge Technologies. Ingenia 8, 58–61 (2001)Google Scholar
  18. 18.
    Siemens, G.: Connectivism: Learning as network creation (2005). http://www.elearnspace.org/Articles/networks.htm
  19. 19.
    Sowa, J.: Conceptual graphs. In: Handbook on Architectures of Information Systems, pp. 287–311. Springer (1998)Google Scholar
  20. 20.
    Thönssen, B.: An enterprise ontology building the bases for automatic metadata generation. In: Sánchez-Alonso, S., Athanasiadis, I.N. (eds.) MTSR 2010. CCIS, vol. 108, pp. 195–210. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  21. 21.
    Thönssen, B., Lutz, J.: Semantically enriched obligation management. In: Proceedings of 4th Conference on Knowledge Management and Information Sharing (KMIS2012) (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gwendolin Wilke
    • 1
    Email author
  • Sandro Emmenegger
    • 2
  • Jonas Lutz
    • 2
  • Michael Kaufmann
    • 3
  1. 1.Institute of Business Information Management IWILucerne University of Applied Sciences and ArtsLucerneSwitzerland
  2. 2.Institute for Information SystemsUniversity of Applied Sciences and Arts Northwestern SwitzerlandOltenSwitzerland
  3. 3.School of Engineering and ArchitectureLucerne University of Applied Sciences and ArtsHorwSwitzerland

Personalised recommendations