Aggregation Operators in Geospatial Queries for Open Street Map

  • Jesús M. Almendros-Jiménez
  • Antonio Becerra-TerónEmail author
  • Manuel Torres
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9415)


One of the most stablished Volunteered Geographic Information (VGI) systems is Open Street Map (OSM) offering data from the earth of urban and rural maps. Recently [1], we have presented a library for querying OSM data with the XML query language XQuery. This library is based on the well-known spatial operators defined by Clementini and Egenhofer, providing a repertoire of XQuery functions which encapsulates the search on the XML document representing a layer of OSM, and makes the definition and composition of queries on top of OSM layers easier. This paper goes towards the incorporation in the library of aggregation operators in order to be able to express queries involving data summarization and ranking. A rich repertoire of aggregation operators has been defined which, in combination with the previously proposed library, makes possible to easily formulate aggregation-based queries. Also we present a Web-based tool, called XOSM (XQuery for Open Street Map), developed in our group, that uses the proposed library to query and visualize OSM data.


Query Language Aggregation Operator Volunteer Geographic Information Spatial Operator Aggregate Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almendros-Jiménez, J.M., Becerra-Terón, A.: Querying open street map with xquery. In: Proceedings of the 1st International Conference on Geographical Information Systems Theory, Applications and Management, pp. 61–71 (2015)Google Scholar
  2. 2.
    Bamford, R., Borkar, V., Brantner, M., Fischer, P.M., Florescu, D., Graf, D., Kossmann, D., Kraska, T., Muresan, D., Nasoi, S., et al.: XQuery reloaded. Proceedings of the VLDB Endowment 2(2), 1342–1353 (2009)CrossRefGoogle Scholar
  3. 3.
    Battle, R., Kolas, D.: Geosparql: enabling a geospatial semantic web. Semantic Web Journal 3(4), 355–370 (2011)Google Scholar
  4. 4.
    Battle, R., Kolas, D.: Enabling the geospatial semantic web with Parliament and GeoSPARQL. Semantic Web 3(4), 355–370 (2012)Google Scholar
  5. 5.
    Bennett, J.: OpenStreetMap - Be your own cartographer. Packt Publishing Ltd (2010)Google Scholar
  6. 6.
    Berglund, A., Boag, S., Chamberlin, D., Fernández, M.F., Kay, M., Robie, J., Siméon, J.: XML Path Language (XPath) 2.0. Technical report (2010)Google Scholar
  7. 7.
    Clementini, E., Di Felice, P.: Spatial operators. ACM SIGMOD Record 29(3), 31–38 (2000)CrossRefGoogle Scholar
  8. 8.
    da Silva, J., de Oliveira, A.G., Fidalgo, R.N., Salgado, A.C., Times, V.C.: Modelling and querying geographical data warehouses. Information Systems 35(5), 592–614 (2010)CrossRefGoogle Scholar
  9. 9.
    Egenhofer, M.J.: Spatial SQL: A Query and Presentation Language. IEEE Trans. Knowl. Data Eng. 6(1), 86–95 (1994)CrossRefGoogle Scholar
  10. 10.
    Eiter, T., Schneider, P., Šimkus, M., Xiao, G.: Using openstreetmap data to create benchmarks for description logic reasoners. In: Proceedings of the 3rd International Workshop on OWL Reasoner Evaluation (ORE 2014), vol. 1207, pp. 51–57. CEUR Workshop Proceedings (2014)Google Scholar
  11. 11.
    Garbis, G., Kyzirakos, K., Koubarakis, M.: Geographica: a benchmark for geospatial RDF stores (long version). In: Alani, H., et al. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 343–359. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  12. 12.
    Goodchild, M.F.: Citizens as sensors: the world of volunteered geography. GeoJournal 69(4), 211–221 (2007)CrossRefGoogle Scholar
  13. 13.
    Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh, H.: Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Mining and Knowledge Discovery 1(1), 29–53 (1997)CrossRefGoogle Scholar
  14. 14.
    Grun, C.: BaseX. The XML Database (2014).
  15. 15.
    Hadjieleftheriou, M., Manolopoulos, Y., Theodoridis, Y., Tsotras, V.J.: R-trees-a dynamic index structure for spatial searching. In: Encyclopedia of GIS, pp. 993–1002. Springer (2008)Google Scholar
  16. 16.
    Kolas, D.: A benchmark for spatial semantic web systems. In: International Workshop on Scalable Semantic Web Knowledge Base Systems (2008)Google Scholar
  17. 17.
    Koubarakis, M., Kyzirakos, K.: Modeling and querying metadata in the semantic sensor web: the model stRDF and the query language stSPARQL. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 425–439. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  18. 18.
    Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: a semantic geospatial DBMS. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 295–311. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  19. 19.
    Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP operations in spatial data warehouses. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 443–459. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  20. 20.
    Robie, J., Chamberlin, D., Dyck, M., Snelson, J.: XQuery 3.0: An XML query language. W3C Proposed Recommendation (2014)Google Scholar
  21. 21.
    Ruiz, C.V., Times, V.C.: A taxonomy of SOLAP operators. In: SBBD, pp. 151–165 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jesús M. Almendros-Jiménez
    • 1
  • Antonio Becerra-Terón
    • 1
    Email author
  • Manuel Torres
    • 1
  1. 1.Information Systems GroupUniversity of AlmeríaAlmeríaSpain

Personalised recommendations