OTM Confederated International Conferences "On the Move to Meaningful Internet Systems"

On the Move to Meaningful Internet Systems: OTM 2015 Conferences pp 405-422 | Cite as

Matchmaking Public Procurement Linked Open Data

  • Jindřich Mynarz
  • Vojtěch Svátek
  • Tommaso Di Noia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9415)

Abstract

An increasing amount of public procurement data is nowadays being ported to linked data format, in view of its exploitation by government, commercial as well as non-profit subjects. One of the crucial tasks in public procurement is matchmaking demand with supply. We conceived this task as that of finding a supplier with previous successful history of contracts similar to a current call for tenders. In this paper we show how to implement a portable matchmaking service that relies solely on the capability of SPARQL 1.1. In order to show its effectiveness, the proposed service has been tested and evaluated on the RDFized versions of 2 procurement databases: the European Union’s Tenders Electronic Daily and the Czech public procurement register. We evaluate several factors influencing matchmaking accuracy, including score aggregation and weighting, query expansion, contribution of additional features obtained from linked data, data quality and volume.

Keywords

Public procurement Matchmaking Linked open data SPARQL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    SPARQL 1.1 Query Language. W3C recommendation. W3C, March 2013. http://www.w3.org/TR/sparql11-query/
  2. 2.
    Alvarez-Rodríguez, J.M., Labra Gayo, J.E., Ordoñez de Pablos, P.: Enabling the matchmaking of organizations and public procurement notices by means of linked open data. In: Cases on Open-Linked Data and Semantic Web Applications, pp. 105–131. IGI Global (2013)Google Scholar
  3. 3.
    Bandiera, O., Prat, A., Valletti, T.: Active and passive waste in government spending: evidence from a policy experiment. American Economic Review 99(4), 1278–1308 (2009). http://www.aeaweb.org/articles.php?doi=10.1257/aer.99.4.1278 CrossRefGoogle Scholar
  4. 4.
    Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. STUDFUZZ, vol. 221. Springer, Heidelberg (2007)Google Scholar
  5. 5.
    Boncz, P., Erling, O., Pham, M.D.: Advances in large-scale RDF data management. In: Auer, S., Bryl, V., Tramp, S. (eds.) Linked open data: creating knowledge out of interlinked data. LNCS, vol. 8661, pp. 21–44. Springer, Heidelberg (2014)Google Scholar
  6. 6.
    Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Transactions on Information Systems 22(1), 143–177 (2004)CrossRefGoogle Scholar
  7. 7.
    Di Noia, T., Di Sciascio, E., Donini, F.M.: Semantic matchmaking as non-monotonic reasoning: a description logic approach. Journal of Artificial Intelligence Research 29(1), 269–307 (2007)MATHGoogle Scholar
  8. 8.
    Access Info Europe and Open Knowledge Foundation. Beyond access: open government data & the right to (re)use public information. Tech. rep. (2011). http://www.access-info.org/documents/Access_Docs/Advancing/Beyond_Access_7_January_2011_web.pdf
  9. 9.
    Ge, M., Delgado-Battenfeld, C., Jannach, D.: Beyond accuracy: evaluating recommender systems by coverage and serendipity. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 257–260. ACM, New York (2010)Google Scholar
  10. 10.
    Hajek, P.: The Metamathematics of Fuzzy Logic. Kluwer (1998)Google Scholar
  11. 11.
    ISO: Information and documentation: commands for interactive text searching. ISO 8777:1993, International Organization for Standardization (1993)Google Scholar
  12. 12.
    Kenny, C.: Publish what you buy: the case for routine publication of government contracts. Tech. Rep. 011, Center for Global Development, Washington DC, August 2012. http://www.cgdev.org/content/publications/detail/1426431
  13. 13.
    Kiefer, C., Bernstein, A., Stocker, M.: The fundamentals of iSPARQL: a virtual triple approach for similarity-based semantic web tasks. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 295–309. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  14. 14.
    Klímek, J., Knap, T., Mynarz, J., Nečaský, M., Svátek, V.: LOD2 deliverable 9a.1.1: Framework for creating linked data in the domain of public sector contracts. Tech. rep., LOD2 EU Project, Prague (2012). http://static.lod2.eu/Deliverables/deliverable-9a.1.1.pdf
  15. 15.
    Marín, J.L., et al.: Euroalert.net: aggregating public procurement data to deliver commercial services to SMEs, pp. 114–130. IGI (2013). http://www.igi-global.com/chapter/euroalert-net-aggregating-public-procurement/69590
  16. 16.
    Mynarz, J., Zeman, V., Dudáš, M.: LOD2 deliverable 9a.2.2: Stable implementation of matching functionality into web application for filing public contracts. Deliverable D9a.2.2, LOD2 EU Project (2014). http://svn.aksw.org/lod2/D9a.2.2/public.pdf
  17. 17.
    Nečaský, M., Klímek, J., Mynarz, J., Knap, T., Svátek, V., Stárka, J.: Linked data support for filing public contracts. Computers in Industry 65(5), 862–877 (2014). special Issue: New trends on E-Procurement applying Semantic TechnologiesCrossRefGoogle Scholar
  18. 18.
    Parycek, P., Höchtl, J., Ginner, M.: Open government data implementation evaluation. Journal of Theoretical and Applied Electronic Commerce Research 9(2), 80–99 (2014). http://www.scielo.cl/pdf/jtaer/v9n2/art07.pdf CrossRefGoogle Scholar
  19. 19.
    Prešern, M., Žejn, G.: Supervizor: an indispensable open government application. In: Share-PSI 2.0 workshop on uses of open data within government for innovation and efficiency (2014). https://www.w3.org/2013/share-psi/wiki/images/6/6b/Supervizor_Slovenia_description_pdf.pdf
  20. 20.
    Richter, M.M., Weber, R.O.: Case-based reasoning: a textbook. Springer (2013)Google Scholar
  21. 21.
    Schmid, B.F., Lindemann, M.A.: Elements of a reference model for electronic markets. In: Proceedings of the Thirty-First Hawaii International Conference on System Sciences, vol. 4, pp. 193–201, January 1998Google Scholar
  22. 22.
    Smyth, B.: Case-based recommendation. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 342–376. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  23. 23.
    Svátek, V., et al.: LOD2 deliverable 9a.3.1: application of data analytics methods of linked data in the domain of PSC. Deliverable D9a.3.1, LOD2 EU Project (2014). http://svn.aksw.org/lod2/D9a.3.1/public.pdf
  24. 24.
    Svátek, V., et al.: LOD2 deliverable 9a.3.2: Implementation of data analytics in the public contract filing application. Deliverable D9a.3.2, LOD2 EU Project (2014). http://svn.aksw.org/lod2/D9a.3.2/public.pdf

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jindřich Mynarz
    • 1
  • Vojtěch Svátek
    • 1
  • Tommaso Di Noia
    • 2
  1. 1.Department of Information and Knowledge EngineeringUniversity of EconomicsPrague 3Czech Republic
  2. 2.Polytechnic University of BariBariItaly

Personalised recommendations