International Workshop on Combinatorial Image Analysis

Combinatorial Image Analysis pp 101-114 | Cite as

Optimal Consensus Set for nD Fixed Width Annulus Fitting

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9448)

Abstract

This paper presents a method for fitting a nD fixed width spherical shell to a given set of nD points in an image in the presence of noise by maximizing the number of inliers, namely the consensus set. We present an algorithm, that provides the optimal solution(s) within a time complexity \(O(N^{n+1}\log N)\) for dimension n, N being the number of points. Our algorithm guarantees optimal solution(s) and has lower complexity than previous known methods.

References

  1. 1.
    Agarwal, P., Har-Peled, S., Varadarajan, K.: Approximating extent measures of points. J. ACM 51(4), 606–635 (2004)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Agarwal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clustering of high dimensional data for data mining applications. In: Proceeding SIGMOD 998 International Conference on Management of data. pp. 94–105 (1998)Google Scholar
  3. 3.
    Andres, E., Jacob, M.A.: The discrete analytical hyperspheres. IEEE Trans. Visual Comput. Graphics 3, 75–86 (1997)CrossRefGoogle Scholar
  4. 4.
    Andres, E., Largeteau-Skapin, G., Zrour, R., Sugimoto, A., Kenmochi, Y.: Optimal consensus set and preimage of \(4\)-connected circles in a noisy environment. In: 21st International Conference on Pattern Recognition (ICPR 2012), pp. 3774–3777. IEEE Xplore (2012)Google Scholar
  5. 5.
    De Berg, M., Bose, P., Bremner, D., Ramaswami, S., Ramaswami, G., Wilfong, G.: Computing constrained minimum-width annuli of point sets. In: Rau-Chaplin, A., Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp. 392–401. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  6. 6.
    Díaz-Báñez, J.M., Hurtado, F., Meijer, H., Rappaport, D., Sellares, T.: The largest empty annulus problem. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002, Part III. LNCS, vol. 2331, pp. 46–54. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  7. 7.
    Dunagan, J., Vempala, S.: Optimal outlier removal in high-dimensional spaces. J. Comput. Sys. Sci. 68(2), 335–373 (2004)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Har-Peled, S., Wang, Y.: Shape fitting with outliers. SIAM J. Comput. 33(2), 269–285 (2004)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Kimme, C., Ballard, D., Sklansky, J.: Finding circles by an array of accumulators. Commun. ACM 18(2), 120–122 (1975)MATHCrossRefGoogle Scholar
  11. 11.
    Largeteau-Skapin, G., Zrour, R., Andres, E.: O(n \(^{3}\)logn) time complexity for the optimal consensus set computation for 4-connected digital circles. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 241–252. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  12. 12.
    Matousek, J.: On enclosing k points by a circle. Inf. Process. Lett. 53(4), 217–221 (1995)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    O’Rourke, J., Kosaraju, S., Megiddo, N.: Computing circular separability. Discrete Comput. Geom. 1, 105–113 (1986)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Phan, M.S., Kenmochi, Y., Sugimoto, A., Talbot, H., Andres, E., Zrour, R.: Efficient robust digital annulus fitting with bounded error. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 253–264. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  15. 15.
    Robinson, S.M.: Fitting spheres by the method of least squares. Commun. ACM 4(11), 491 (1961). http://doi.acm.org/10.1145/366813.366824 MATHCrossRefGoogle Scholar
  16. 16.
    Roussillon, T., Tougne, L., Sivignon, I.: On three constrained versions of the digital circular arc recognition problem. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 34–45. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  17. 17.
    Smid, M., Janardan, R.: On the width and roundness of a set of points in the plane. Int. J. Comput. Geom. 9(1), 97–108 (1999)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Toutant, J., Andres, E., Roussillon, T.: Digital circles, spheres and hyperspheres: from morphological models to analytical characterizations and topological properties. Discrete Appl. Math. 161(16–17), 2662–2677 (2013)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Zrour, R., Kenmochi, Y., Talbot, H., Buzer, L., Hamam, Y., Shimizu, I., Sugimoto, A.: Optimal consensus set for digital line and plane fitting. Int. J. Imaging Syst. Technol. 21(1), 45–57 (2011)CrossRefGoogle Scholar
  20. 20.
    Zrour, R., Largeteau-Skapin, G., Andres, E.: Optimal consensus set for annulus fitting. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 358–368. Springer, Heidelberg (2011) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rita Zrour
    • 1
  • Gaelle Largeteau-Skapin
    • 1
  • Eric Andres
    • 1
  1. 1.Laboratoire XLIM, SIC, UMR CNRS 7252Université de PoitiersFuturoscope ChasseneuilFrance

Personalised recommendations