International Workshop on Combinatorial Image Analysis

Combinatorial Image Analysis pp 157-171 | Cite as

Thoughts on 3D Digital Subplane Recognition and Minimum-Maximum of a Bilinear Congruence Sequence

  • Eric Andres
  • Dimitri Ouattara
  • Gaelle Largeteau-Skapin
  • Rita Zrour
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9448)

Abstract

In this paper we take first steps in addressing the 3D Digital Subplane Recognition Problem. Let us consider a digital plane \(P: 0 \le ax+by-cz+d <c\) (w.l.o.g. \(0 \le a \le b \le c\)) and a finite subplane S of P defined as the points (xyz) of P such that \((x,y) \in \left[ x_0,x_1\right] \times \left[ y_0,y_1\right] \). The Digital Subplane Recognition Problem consists in determining the characteristics of the subplane S in less than linear (in the number of voxels) complexity. We discuss approaches based on remainder values \(\left\{ \frac{ax+by+d}{c} \right\} , (x,y) \in \left[ x_0,x_1\right] \times \left[ y_0,y_1\right] \) of the subplane. This corresponds to a bilinear congruence sequence. We show that one can determine if the sequence contains a value \(\epsilon \) in logarithmic time. An algorithm to determine the minimum and maximum of such a bilinear congruence sequence is also proposed. This is linked to leaning points of the subplane with remainder order conservation properties. The proposed algorithm has a complexity in, if \(m=x_1-x_0 < n = y_1-y_0\), \(O(m\log \left( \min (a,c-a)\right) \) or \(O(n\log \left( \min (b,c-b)\right) \) otherwise.

Keywords

Digital planes Digital subplane recognition problem  Congruence sequence 

References

  1. 1.
    Andres, E., Acharya, R., Sibata, C.: Discrete analytical hyperplanes. Graphical Models Image Process. 59(5), 302–309 (1997)CrossRefGoogle Scholar
  2. 2.
    Berthé, V., Labbé, S.: An Arithmetic and combinatorial approach to three-dimensional discrete lines. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.) DGCI 2011. LNCS, vol. 6607, pp. 47–58. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  3. 3.
    Brimkov, V.E., Coeurjolly, D., Klette, R.: Digital planarity - a review. Discrete Appl. Math. 155(4), 468–495 (2007)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Brons, R.: Linguistic methods for the description of a straight line on a grid. Comput. Graphics Image Process. 3(1), 48–62 (1974)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Coven, E.M., Hedlund, G.: Sequences with minimal block growth. Math. Syst. Theory 7(2), 138–153 (1973)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Debled-Rennesson, I., Reveilles, J.P.: A linear algorithm for segmentation of digital curves. IJPRAI 09(04), 635–662 (1995)Google Scholar
  7. 7.
    Dexet, M., Andres, E.: A generalized preimage for the digital analytical hyperplane recognition. Discrete Appl. Math. 157(3), 476–489 (2009)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Feschet, F., Tougne, L.: On the min DSS problem of closed discrete curves. Discrete Appl. Math. 151(1–3), 138–153 (2005)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Gérard, Y., Debled-Rennesson, I., Zimmermann, P.: An elementary digital plane recognition algorithm. Discrete Appl. Math. 151(1–3), 169–183 (2005)MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Klette, R., Rosenfeld, A.: Digital straightness - a review. Discrete Appl. Math. 139(1–3), 197–230 (2004)MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Lachaud, J.O., Said, M.: Two efficient algorithms for computing the characteristics of a subsegment of a digital straight line. Discrete Appl. Math. 161(15), 2293–2315 (2013)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Largeteau-Skapin, G., Debled-Rennesson, I.: Outils arithmétiques pour la géométrie discrète. In: Géométrie discrète et images numériques, pp. 59–74. Traité IC2 - Traitement du signal et de l’image, Hermès - Lavoisier (2007)Google Scholar
  13. 13.
    Ouattara, J.D., Andres, E., Largeteau-Skapin, G., Zrour, R., Tapsoba, T.M.: Remainder approach for the computation of digital straight line subsegment characteristics. Discrete Appl. Math. 183, 90–101 (2015). http://dx.doi.org/10.1016/j.dam.2014.06.006 MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Reveillès, J.P.: Calcul en Nombres Entiers et Algorithmique. Ph.D. thesis, Université Louis Pasteur, Strasbourg, France (1991)Google Scholar
  15. 15.
    Said, M., Lachaud, J.-O., Feschet, F.: Multiscale discrete geometry. In: Brlek, S., Reutenauer, C., Provençal, X. (eds.) DGCI 2009. LNCS, vol. 5810, pp. 118–131. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  16. 16.
    Sivignon, I.: Walking in the Farey fan to compute the characteristics of a discrete straight line subsegment. In: Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749, pp. 23–34. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  17. 17.
    Sivignon, I., Coeurjolly, D.: Minimal decomposition of a digital surface into digital plane segments Is NP-hard. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 674–685. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  18. 18.
    Fernique, T.: Generation and recognition of digital planes using multi-dimensional continued fractions. Pattern Recogn. 10(42), 2229–2238 (2009)CrossRefGoogle Scholar
  19. 19.
    Vacavant, A., Roussillon, T., Kerautret, B., Lachaud, J.O.: A combined multi-scale/irregular algorithm for the vectorization of noisy digital contours. Comput. Vis. Image Underst. 117(4), 438–450 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Eric Andres
    • 1
  • Dimitri Ouattara
    • 1
  • Gaelle Largeteau-Skapin
    • 1
  • Rita Zrour
    • 1
  1. 1.Laboratoire XLIM, SIC, UMR CNRS 7252Université de PoitiersFuturoscope ChasseneuilFrance

Personalised recommendations