Academic Search. Methods of Displaying the Output to the End User

  • Svetlana Popova
  • Ivan Khodyrev
  • Artem Egorov
  • Vera Danilova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9416)


The present paper spans the task of structured representation of search results in developed academic search system. Main contribution of our work is integration into the search process both: 1) structured visualization of search results (clustering and topic graph); 2) providing information about yearly dynamics of topics for query results. The latter makes the system more flexible and suitable for data monitoring. The system can be used not only for academic search, but also for foresight studies.


Information retrieval Academic search Search output representation Foresight tools Natural language processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gutwina, C., Paynterb, G., Wittenb, I., Nevill-Manningc, C., Frankb, E.: Improving browsing in digital libraries with keyphrase indexes // Journal Decision Support Systems - From information retrieval to knowledge management: enabling technologies and best practices archive, Volume 27, Issue 1–2, Nov. 1999, Pages 81–104Google Scholar
  2. 2.
    Bernardini, A., Carpineto, C.: Full-subtopic retrieval with keyphrase-based search results clustering. In: IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, WI-IAT 2009, vol. 1 (2009)Google Scholar
  3. 3.
    Zeng, H.-J., He, Q.-C., Chen, Z., Ma, W.-Y., Ma, J.: Learning to cluster web search results. In: Proceeding SIGIR 2004 Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 210–217Google Scholar
  4. 4.
    Popova, S., Khodyrev, I.: Ranking in keyphrase extraction problem: is it suitable to use statistics of words occurrences? In: Proceedings of the Institute for System Programming, vol. 26(4), pp. 123–136 (2014)Google Scholar
  5. 5.
    Mirylenka, D., Passerini, A.: Scienscan – an efficient visualization and browsing tool for academic search. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part III. LNCS, vol. 8190, pp. 667–671. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Mirylenka, D., Passerini, A.: Navigating the topical structure of academic search results via the wikipedia category network. In: Proceeding CIKM 2013 Proceedings of the 22nd ACM International Conference on Conference on Information & Knowledge Management, pp. 891–896Google Scholar
  7. 7.
    Popova, S., Kovriguina, L., Khodyrev, I., Mouromtsev, D.: Stop-words in keyphrase ex-traction problem. In: Proc. FRUCT 2013 Conference, pp. 113–121Google Scholar
  8. 8.
    You, W., Fontaine, D., Barhes, J.-P.: An automatic keyphrase extraction system for scientific documents. Knowl. Inf. Syst. 34, 691–724 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Svetlana Popova
    • 1
    • 2
    • 3
  • Ivan Khodyrev
    • 1
  • Artem Egorov
    • 1
  • Vera Danilova
    • 4
  1. 1.ITMO UniversitySaint-PetersburgRussia
  2. 2.Saint-Petersburg State UniversitySaint-PetersburgRussia
  3. 3.ORIONSaint-PetersburgRussia
  4. 4.Russian Presidential Academy of National Economy and PublicMoscowRussia

Personalised recommendations