Advertisement

Comics Instance Search with Bag of Visual Words

  • Duc-Hoang NguyenEmail author
  • Minh-Triet Tran
  • Vinh-Tiep Nguyen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9446)

Abstract

Comics is rapidly developing and attracting a lot of people around the world. The problem is how a reader can find a translated version of a comics in his or her favorite language when he or she sees a certain comics page in another language. Therefore, in this paper, we propose a comics instance search based on Bag of Visual Words so that readers can find in a collection of translated versions of various comics with a single instance as a comics page in an arbitrary language. Our method is based on visual information and does not rely on textual information of comics. Our proposed system uses Apache Lucene to handle inverted index process to find comics pages with visual words and spatial verification using RANSAC to eliminate bad results. Experimental results on our dataset with 20 comics containing more than 270,000 images achieve the accuracy up to 77.5 %. This system can be improved for building a commercial system that allows a reader easily search a multi-language collection of comics with a comics page as an input query.

Keywords

Visual instance search Comics Bag of visual words Lucene 

References

  1. 1.
    One Piece Manga sets Guinness World record (in English). Anime News Network. http://www.animenewsnetwork.com/news/2015-06-14/one-piece-manga-sets-guinness-world-record-for-copies-printed-for-comic-by-single-author/.89275. Accessed 15 June 2015
  2. 2.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)Google Scholar
  3. 3.
    Lowe, D.G.: Object recognition from local scale-invariant features. Proc. Int. Conf. Comput. Vis. 2, 1150–1157 (1999)Google Scholar
  4. 4.
    Herbert, B., Andreas, E., Tinne, T., Luc, V.G.: SURF: speeded up robust features. Comput. Vis. Image Underst. (CVIU) 110(3), 346–359 (2008)CrossRefGoogle Scholar
  5. 5.
    Ethan, R., Vincent, R., Kurt, K., Gary R.B.: ORB: an efficient alternative to SIFT or SURF. In: ICCV, pp. 2564–2571 (2011)Google Scholar
  6. 6.
    Edward, R., Tom, D.: Machine learning for high speed corner detection. In: 9th European Conference on Computer Vision, vol. 1, pp. 430–443 (2006)Google Scholar
  7. 7.
    Edward, R., Reid, P., Tom, D.: Faster and better: a machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32, 105–119 (2010)CrossRefGoogle Scholar
  8. 8.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Martin, A.F., Robert, C.B.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. Proc. Int. Conf. Comput. Vis. 2, 1470–1477 (2003)CrossRefGoogle Scholar
  11. 11.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. Comput. Vis. 60(1), 63–86 (2004)CrossRefGoogle Scholar
  13. 13.
    Extremal, M.S., Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from. In: In British Machine Vision Conference, pp. 384–393 (2002)Google Scholar
  14. 14.
    Arandjelovic, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)Google Scholar
  15. 15.
    Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  16. 16.
    Philbin, J., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: improving particular object retrieval in large scale image databases. In: IEEE Conference on Computer Vision and Pattern Recognition (2008)Google Scholar
  17. 17.
    Le, D.D., Zhu, C.-Z., Phan, S., Poullot, S., Duong, D.A., Satoh, S.: National institute of informatics, Japan at trecvid 2013. In: TRECVID, Orlando, Florida, USA (2013)Google Scholar
  18. 18.
    Zhu, C., Jegou, H., Satoh, S.: Query-adaptive asymmetrical dissimilarities for visual object retrieval. In: IEEE International Conference on Computer Vision, ICCV 2013, pp. 1705–1712, Sydney, Australia. IEEE, 1–8 Dec 2013Google Scholar
  19. 19.
    Tolias, G., Avrithis, Y.S.: Speeded-up, relaxed spatial matching. In: IEEE International Conference on Computer Vision, ICCV 2011, pp. 1653–1660. Barcelona, Spain, 6–13 Nov 2011Google Scholar
  20. 20.
    Zhang, W., Ngo, C.-W.: Searching visual instances with topology checking and context modeling. In Proceedings of the 3rd ACM Conference on International Conference on Multimedia Retrieval, ICMR 2013, pp. 57–64. New York, NY, USA (2013)Google Scholar
  21. 21.
    Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Cao, Y., Wang, C., Li, Z., Zhang, L., Zhang, L.: Spatial-bag-of-features. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3352–3359 (2010)Google Scholar
  23. 23.
    Shen, X., Lin, Z., Brandt, J., Avidan, S., Wu, Y.: Object retrieval and localization with spatially-constrained similarity measure and k-nn re-ranking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3013–3020 (2012)Google Scholar
  24. 24.
    Elasticsearch. https://www.elastic.co/products/elasticsearch. Accessed 10 Sept 2015
  25. 25.
    Apache Lucene. http://lucene.apache.org/. Accessed 10 Sept 2015

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Duc-Hoang Nguyen
    • 1
    • 2
    Email author
  • Minh-Triet Tran
    • 1
  • Vinh-Tiep Nguyen
    • 1
  1. 1.Faculty of Information TechnologyUniversity of Science, VNU-HCMHo Chi Minh CityVietnam
  2. 2.Squarebit Inc.Ho Chi Minh CityVietnam

Personalised recommendations