International Joint Conference on Biomedical Engineering Systems and Technologies

Biomedical Engineering Systems and Technologies pp 378-393 | Cite as

A Full Body Sensing System for Monitoring Stroke Patients in a Home Environment

  • Bart Klaassen
  • Bert-Jan van Beijnum
  • Marcel Weusthof
  • Dennis Hofs
  • Fokke van Meulen
  • Ed Droog
  • Henk Luinge
  • Laurens Slot
  • Alessandro Tognetti
  • Federico Lorussi
  • Rita Paradiso
  • Jeremia Held
  • Andreas Luft
  • Jasper Reenalda
  • Corien Nikamp
  • Jaap Buurke
  • Hermie Hermens
  • Peter Veltink
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 511)

Abstract

Currently, the changes in functional capacity and performance of stroke patients after returning home from a rehabilitation hospital is unknown to a physician, having no objective information about the intensity and quality of a patient’s daily-life activities. Therefore, there is a need to develop and validate an unobtrusive and modular system for objectively monitoring the stroke patient’s upper and lower extremity motor function in daily-life activities and in home training. This is the main goal of the European FP7 project named “INTERACTION”. A complete full body sensing system is developed, whicj integrates Inertial Measurement Units (IMU), Knitted Piezoresistive Fabric (KPF) strain sensors, KPF goniometers, EMG electrodes and force sensors into a modular sensor suit designed for stroke patients. In this paper, we describe the complete INTERACTION sensor system. Data from the sensors are captured wirelessly by a software application and stored in a remote secure database for later access and processing via portal technology. Data processing includes a 3D full body reconstruction by means of the Xsens MoCap Engine, providing position and orientation of each body segment (poses). In collaboration with clinicians and engineers, clinical assessment measures were defined and the question of how to present the data on the web portal was addressed. The complete sensing system is fully implemented and is currently being validated. Patients measurements start in June 2014.

Keywords

Telemedicine Architecture Sensing system Stroke Home environment Daily-life activities Monitoring Performance Capacity 

References

  1. 1.
    Berg, K.O., Wood-Danphinee, S., Williams, J.T.: Measuring balance in the elderly: preliminary development of an instrument. Physiotherapy 41(6), 304–311 (1989)Google Scholar
  2. 2.
    European Data Format: A simple and flexible format for exchange and storage of multichannel biological and physical signals (2014). http://www.edfplus.info/ 05 June 2014
  3. 3.
    Highsoft Solutions AS: Highcharts JS, interactive JavaScript charts for your website (2014). http://www.highcharts.com/ 05 June 2014
  4. 4.
    INTERACTION: Official INTERACTION project website (2014). http://www.interaction4stroke.eu 30 September 2013
  5. 5.
    Interlink Electronics Inc.: (2014). http://www.interlinkelectronics.com 05 June 2014
  6. 6.
    Liferay, Inc: Liferay delivers open source enterprise solutions for portals, publishing, content, and collaboration. (2013). http://www.liferay.com/ 30 September 2013
  7. 7.
    Matlab: The MathWorks Inc., Natick, Massachusetts, United States (2014)Google Scholar
  8. 8.
    MatlabControl: Matlabcontrol API for JAVA. (2013) http://code.google.com/p/matlabcontrol/ 30 September 2013
  9. 9.
    Pawar, P., Jones, V., Van Beijnum, B.J.F., Hermens, H.: A framework for the comparison of mobile patient monitoring systems. J. Biomed. Inform. 45(3), 544–556 (2012)CrossRefGoogle Scholar
  10. 10.
    Roetenberg, D., Luinge, H., Slycke, P., Xsens MVN: Full 6DOF Human Motion Tracking Using Miniature Inertial Sensors. Xsens Motion Technologies BV. Technical Report (2009)Google Scholar
  11. 11.
    Sumner, B., Mancuso, C., Paradiso, R.: Performances evaluation of textile electrodes for EMG remote measurements. In: Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. pp. 6510–6513 (2013)Google Scholar
  12. 12.
    Tekscan, Inc.: FlexiForce® (2014). http://www.tekscan.com/flexiforce.html 05 June 2014
  13. 13.
    Twitter Bootstrap: Sleek, intuitive, and powerful front-end framework for faster and easier web development (2014). http://getbootstrap.com/ 05 June 2014
  14. 14.
    Vicon Motion Systems Ltd. Oxford, England (2014)Google Scholar
  15. 15.
    Xsens Technologies B.V: MTW Development KIT Lite (2014). http://www.xsens.com/en/mtw-dk-lite 05 June 2014

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bart Klaassen
    • 1
  • Bert-Jan van Beijnum
    • 1
  • Marcel Weusthof
    • 1
  • Dennis Hofs
    • 2
  • Fokke van Meulen
    • 1
  • Ed Droog
    • 1
  • Henk Luinge
    • 3
  • Laurens Slot
    • 3
  • Alessandro Tognetti
    • 4
  • Federico Lorussi
    • 4
  • Rita Paradiso
    • 5
  • Jeremia Held
    • 6
  • Andreas Luft
    • 6
  • Jasper Reenalda
    • 1
    • 2
  • Corien Nikamp
    • 1
    • 2
  • Jaap Buurke
    • 1
    • 2
  • Hermie Hermens
    • 1
    • 2
  • Peter Veltink
    • 1
  1. 1.Biomedical Signals and Systems GroupUniversity of TwenteEnschedeThe Netherlands
  2. 2.Roessingh Research and Development B.V.EnschedeThe Netherlands
  3. 3.Xsens Technologies B.V.EnschedeThe Netherlands
  4. 4.Interdepartmental Center E. PiaggioUniversity of PisaPisaItaly
  5. 5.Smartex SRLPisaItaly
  6. 6.Department of NeurologyUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations