Advertisement

Bimagnetic Microwires, Magnetic Properties, and High-Frequency Behavior

  • Manuel Vázquez
  • Rhimou ElKammouni
  • Galina V. Kurlyandskaya
  • Valeria Rodionova
  • Ludek Kraus
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 231)

Abstract

Bimagnetic microwires are cylindrically multilayered systems consisting of two magnetic metallic microlayers, a cylindrical nucleus, and an external shell, separated by an insulating layer. Such microwires are synthesized by combined quenching and drawing, sputtering, and electrodeposition, and the magnetic configuration of each phase can be suitably tailored to result in soft/soft, soft/hard, or hard/soft biphase microwires. Several families of alloy composition for each phase are considered in this overview: magnetostrictive Fe-based and non-magnetostrictive CoFe-based amorphous alloys for the nucleus and soft FeNi and harder CoNi alloys with polycrystalline character for the shell. The phenomenology of the magnetic behavior of the different microwires under low-frequency applied field is firstly described. Particularly the influence of the thickness of layers and that of thermal annealing are presented. A specific study is performed as a function of the measuring temperature in the range of below (15–300 K) and above (300–1000 K) room temperature. Magnetic and structural phase transitions are determined.

Special attention is paid to the ferromagnetic resonance and microwave absorption experimentally investigated with the help of network analyzer, NA-FMR, as a function of applied field in the frequency range up to 14 GHz and with perturbation cavity at X-band (9.5 GHz) and K-band (69 GHz) under different applied fields. The network analyzer-FMR allows us to conclude the presence of multipeak resonance spectra for soft/soft biphase systems while no absorption is detected for the hard phase. In addition, the observed non-Kittel absorption in bimetallic microwires allows us to confirm the equivalency to a capacitor.

The analysis in perturbation cavity is carried out as a function of the measuring dependence (X-band) where the role of the different contributing phases is determined. A correlation between FMR absorption data with that obtained through NA-FMR is performed. Further analysis at room temperature allows us to conclude the need of magnetic saturation of the hard phase to observe properly its FMR absorption. In addition, the screening effect induced by the external metallic shell on the nucleus is observed.

Keywords

CoNi Shell Biphase System Ferromagnetic Resonance External Shell Metallic Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Authors thank I. Orue and Luis Lezama (UPV-EHU) for special support. Selected microwave measurements were made at SGIker services UPV-EHU. Work in Madrid has been supported by the Government of Madrid under Project S2013/MIT195, 2850 NANOFRONTMAG-CM. The work done in Prague was partly supported by the Grant Agency of the Czech Republic under the project P102/12/2177.

References

  1. 1.
    Luborsky, F.E.: Amorphous Metallic Alloys. Butterworths, London (1983)CrossRefGoogle Scholar
  2. 2.
    Svalov, A.V., Fernandez, A., Barandiaran, J.M., Vas’kovskiy, V.O., Orue, I., Tejedor, M., Kurlyandskaya, G.V.: J. Magn. Magn. Mater. 320, 734 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Vazquez, M.: Advanced Magnetic Microwires” in Handbook of Magnetism and Advanced Magnetic Materials, p. 2193. Wiley, Chichester (2007)Google Scholar
  4. 4.
    McHenry, M.E., Willard, M.A., Laughlin, D.E.: Prog. Mater. Sci. 44, 291 (1999)CrossRefGoogle Scholar
  5. 5.
    Zhukov, A., Zhukova, V.: (2009) Magnetic Properties and Applications of Ferromagnetic Microwires with Amorphous and Nanocrystalline Structure, pp. 117–162. Nova Science, Hauppauge, NY (2009)Google Scholar
  6. 6.
    Knobel, M., Kraus, L., Vazquez, M.: Giant magnetoimpedance. In: Buschow, K.H. (ed.) Handbook of Magnetic Materials, vol. 15, pp. 1–69. Elsevier Science, Amsterdam (2003). Chap. 5Google Scholar
  7. 7.
    Chiriac, H., Ovari, T.A.: Prog. Mater. Sci. 40, 333 (1996)CrossRefGoogle Scholar
  8. 8.
    Vazquez, M., Chiriac, H., Zhukov, A., Panina, L., Uchiyama, T.: Phys. Status Solidi A 238, 493 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    Sinnecker, J.P., Garcia, J.M., Asenjo, A., Vazquez, M., Garcia-Arribas, A.: J. Mater. Res. 15, 751 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Garcia, J.M., Asenjo, A., Vazquez, M., Yakunin, A.M., Antonov, A.S., Sinnecker, J.P.: J. Appl. Phys. 89, 3888 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    Kurlyandskaya, G.V., Garcia-Miquel, H., Svalov, A.V., Vas’kovskiy, V.O., Vázquez, M.: Phys. Met. Metallogr. 91, S125 (2001)Google Scholar
  12. 12.
    Garcia-Miquel, H., Bhagat, S.M., Lofland, S.E., Kurlyandskaya, G.V., Svalov, A.V.: J. Appl. Phys. 94, 1868 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    Muñoz, A.G., Schiefer, C., Kisker, E.: J. Appl. Phys. 103, 073904 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Pirota, K., Hernandez-Velez, M., Navas, D., Zhukov, A., Vazquez, M.: Adv. Funct. Mater. 14, 266 (2004)CrossRefGoogle Scholar
  15. 15.
    Pirota, K., Provencio, M., Garcıa, K., Mendoza, P., Hernandez-Velez, M., Vazquez, M.: J. Magn. Magn. Mater. 290, 68 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Borza, F., Corodeanu, S., Lupu, N., Chiriac, H.: J. Alloys Compd. 554, 150 (2013)CrossRefGoogle Scholar
  17. 17.
    Kraus, L., Pirota, K., Torrejon, J., Vazquez, M.: J. Appl. Phys. 101(2007), 063910 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Torrejon, J., Badini, G., Pirota, K., Vazquez, M.: Acta Mater. 55, 4271 (2007)CrossRefGoogle Scholar
  19. 19.
    Badini-Confalonieri, G., Infante, G., Torrejon, J., Vazquez, M.: J. Magn. Magn. Mater. 320, 2443 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Torrejon, J., Vazquez, M., Panina, L.V.: J. Appl. Phys. 105, 033911 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    Torrejón, J., Pirota, K.R., Badini-Confalonieri, G.A., Vázquez, M.: Sens. Lett. 7, 236 (2009)CrossRefGoogle Scholar
  22. 22.
    Vazquez, M., Pfützner, H., Pirota, K., Badini, G., Torrejon, J. Patent PCT/ES2005/070173 (2006)Google Scholar
  23. 23.
    Vazquez, M., Badini, G., Infante, F., Butta, M., Ripka, P.: Patent PCT/ES2009/070417 (2009)Google Scholar
  24. 24.
    Butta, M., Ripka, P., Vazquez, M., Infante, G., Kraus, L.: Sens Lett 11, 50 (2013)CrossRefGoogle Scholar
  25. 25.
    Pfutzner, H., Kaniusas, E., Kosel, J., Mehnen, L., Meydan, T., Vazquez, M., Rhon, M., Merlo, A. M., Marquardt, B. Sensor. Actuat. 129,154 (2006)Google Scholar
  26. 26.
    Kolesar, V., Vazquez, M. Patent P201431530 (2014)Google Scholar
  27. 27.
    Torrejon, J., Infante, G., Badini-Confalonieri, G., Pirota, K., Vazquez, M.: J.O.M. (2013). doi: 10.1007/s11837-013-0614-3 Google Scholar
  28. 28.
    Badini-Confalonieri, G., Navas, D.: Bimagnetic microwires and nanowires: synthesis and characterization. In: Vazquez, M. (ed.) Magnetic Nano and Microwires, pp. 275–310. Woodhouse Elsevier, Cambridge UK (2015)CrossRefGoogle Scholar
  29. 29.
    Li, X.P., Seet, J., Fan, J.: J. Magn. Magn. Mater. 304, 111 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Schlesinger, M., Paunovic, M.: Modern Electroplating. Wiley, Chichester (2000)Google Scholar
  31. 31.
    Torrejon, J., Thiaville, A., Adenot-Engelvin, A.L., Vazquez, M.: J. Magn. Magn. Mater. 333, 144 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    El Kammouni, R., Infante, G., Torrejon, J., Britel, M.R., Brigui, J., Vazquez, M.: Phys. Status Solidi A 208, 520 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    El Kammouni, R., Vazquez, M.: IEEE Trans. Magn. 49, 34 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    Lumá, H., Vázquez, M., Hernandez, M., Ruiz, J.M., García-Beneytez, J.M., Zhukov, A., Castaño, F.J., Zhang, X.X., Tejada, J.: J. Magn. Magn. Mater. 196–197, 821 (1999)CrossRefGoogle Scholar
  35. 35.
    Vázquez, M., Zhukov, A., García, K.L., Pirota, K.R., Ruiz, A., Martinez, J.L., Knobel, M.: Mater. Sci. Eng. A. 375–377, 1145 (2004)CrossRefGoogle Scholar
  36. 36.
    Rodionova, V., Nikoshin, A., Torrejón, J., Badini-Confalonieri, G.A., Perov, N., Vazquez, M.: IEEE Trans. Magn. 47, 3787 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    Iglesias, I., El Kammouni, R., Chichay, K., Vazquez, M., Rodionova, V.: Solid State Phenom. 233–234, 265 (2015)CrossRefGoogle Scholar
  38. 38.
    El Kammouni, R.: Ph.D., Autonomous University of Madrid (2015)Google Scholar
  39. 39.
    El Kammouni, R., Vazquez, M., Lezama, L., Kurlyandskaya, G., Kraus, L.: J. Magn. Magn. Mater. 368, 126 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    El Kammouni, R., Iglesias, I., Chichay, K., Svec, P., Rodionova, V., Vazquez, M.: J. Appl. Phys. 116, 093902 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    Mc Henry, M.E., Willard, M.A., Laughlin, D.E.: Progr. Mater. Sci 44, 291 (1999)CrossRefGoogle Scholar
  42. 42.
    Celegato, F., Coisson, M., Olivetti, E., Tiberto, P., Vinai, F.: Phys. Stat. Sol. A. 205, 1745 (2008)ADSCrossRefGoogle Scholar
  43. 43.
    P. Svec, P. Svec, Sr., I. Matko, I. Skorvanek, J. Kovac, D. Janickovic and G. Vlasak, Solid State Phenom. 172–174, 953 (2011)Google Scholar
  44. 44.
    Bozorth, R.M.: Ferromagnetism, p. 276. Van Nostrand, London (1968)Google Scholar
  45. 45.
    Yu, P., Jin, X.F., Kudrnovský, J., Wang, D.S., Bruno, P.: Phys. Rev. B 77, 4431 (2008)ADSGoogle Scholar
  46. 46.
    Kraus, L.: Phys. Lett. 99A, 189 (1983)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Menard, D., Britel, M., Ciureanu, P., Yelon, A., Paramonov, V.P., Antonov, A.S., Rudkowski, P., Stroem-Olsen, J.O.: J. Appl. Phys. 81, 4032 (1997)ADSCrossRefGoogle Scholar
  48. 48.
    Ledieu, M., Schoenstein, F., Deprot, S., Adenot, A.-L., Bertin, F., Acher, O.: IEEE Trans. Magn. 39, 3046 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    Antonenko, A.N., Baranov, S.A., Larin, V.S., Torcunov, A.V.: J. Mater. Sci. Eng. A 247, 248 (1997)Google Scholar
  50. 50.
    Makhnovskiy, D.P., Panina, L.V.: J. Appl. Phys. 93, 4120 (2003)ADSCrossRefGoogle Scholar
  51. 51.
    Kraus, L., Infante, G., Frait, Z., Vazquez, M.: Phys. Rev. B 83, 174438 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    García-Miquel, H., Kurlyandskaya, G.V.: Chin. Phys. B 17, 1430 (2008)CrossRefGoogle Scholar
  53. 53.
    Montiel, H., Alvarez, G., Betancourt, I., Zamorano, R., Valenzuela, R.: Appl. Phys. Lett. 86, 072503 (2005)ADSCrossRefGoogle Scholar
  54. 54.
    Garcia Miquel, H., Garcıa, J.M., Garcıa-Beneytez, J.M., Vazquez, M.: J. Magn. Magn. Mater. 231, 38 (2001)ADSCrossRefGoogle Scholar
  55. 55.
    Ipatov, M., Zhukova, V., Zhukov, A., Gonzalez, J., Zvezdin, A.: J. Phys. Conf. Ser. 200, 082009 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    Torrejón, J., Badini-Confalonieri, G.A., Vázquez, M.: J. Appl. Phys. 106, 023913 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    Kittel, C.: Introduction to Solid State Physics, p. 503. Wiley, New York (1996). Ch. 16Google Scholar
  58. 58.
    Kraus, L.: Ferromagnetic resonance in individual wires: from micro to nanowires. In: Vazquez, M. (ed.) Magnetic Nano and Microwires, pp. 449–482. Woodhouse, Elsevier, Cambridge, UK (2015)CrossRefGoogle Scholar
  59. 59.
    Chiriac, H., Coleniuc, C.N., Ovari, T.A.: IEEE Trans. Magn. 35, 3841 (1999)ADSCrossRefGoogle Scholar
  60. 60.
    Raposo, V., Vázquez, M., Flores, A.G., Zazo, M., Íñiguez, J.I.: Sens. Actuators. A 106, 329 (2003)CrossRefGoogle Scholar
  61. 61.
    Wu, Z.M., Zhao, Z.J., Liu, L.P., Lin, H., Cheng, J.K., Yang, J.X., Yang, X.L.: IEEE Trans. Magn. 43, 3146 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    Alvarez, G., Montiel, H., Garcia-Arribas, A., Zamorano, R., Barandiaran, J.M., Valenzuela, R.: J. Non Cryst. Solids 354, 5195–5197 (2008)ADSCrossRefGoogle Scholar
  63. 63.
    Chiriac, H., Colesniuc, C. N., Ovari, T. A.: IEEE Trans. Magn. 15 (1999)Google Scholar
  64. 64.
    Kraus, L., Frait, Z., Ababei, G., Chayka, O., Chiriac, H.: J. Appl. Phys. 111, 053924 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Manuel Vázquez
    • 1
  • Rhimou ElKammouni
    • 1
    • 2
  • Galina V. Kurlyandskaya
    • 2
    • 3
  • Valeria Rodionova
    • 4
  • Ludek Kraus
    • 5
  1. 1.Instituto de Ciencia de Materiales de Madrid, ICMM/CSICMadridSpain
  2. 2.Laboratory of Magnetic Sensors, UrFUEkaterinburgRussia
  3. 3.Departamento de Electricidad y ElectrónicaUniversidad del País Vasco, UPV/EHUBilbaoSpain
  4. 4.Immanuel Kant Baltic Federal UniversityKaliningradRussia
  5. 5.Institute of PhysicsAcademy of Sciences of the Czech RepublicPrague 8Czech Republic

Personalised recommendations