Transition Metal Oxides as Supercapacitor Materials

  • Zhibin Wu
  • Yirong Zhu
  • Xiaobo JiEmail author
  • Craig E. Banks
Part of the Nanostructure Science and Technology book series (NST)


Transition metal oxides attract considerable attention in the field of energy storage/conversion not only because of their beneficial reported mechanical, structural, or electronic properties but also due to their high pseudocapacitances ascribed to their multiple valence state changes which is generally not possible via carbon materials. Typically, transition metal oxides utilized as supercapacitor materials can be classified into noble transition metal oxides such as RuO2 and IrO2 and base transition metal oxides including MnO2, NiO, Co3O4, NiCo2O4, etc. Alternatively, base transition metal oxides are considerably cheaper and more environmentally friendly than noble transition metals as well as exhibiting excellent capacitive properties, which have become a new research hotspot in recent years. This chapter briefly analyzes the energy storage mechanism of transition metal oxides, summarizes the methodologies and nanostructures prospering in recent years, and points out the potential problems and prospects of utilizing transition metal oxides as the basis of supercapacitors.


Specific Capacitance Electrochemical Performance Transition Metal Oxide High Specific Capacitance Ruthenium Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aricò AS, Bruce P, Scrosati B, Tarascon J-M, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377CrossRefGoogle Scholar
  2. 2.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854CrossRefGoogle Scholar
  3. 3.
    Conway B, Pell W (2003) Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J Solid State Electrochem 7(9):637–644CrossRefGoogle Scholar
  4. 4.
    Lang X, Hirata A, Fujita T, Chen M (2011) Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat Nanotechnol 6(4):232–236CrossRefGoogle Scholar
  5. 5.
    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries End and supercapacitors begin? Sci Mag 343:1210–1211Google Scholar
  6. 6.
    Becker HI (1957) Low voltage electrolytic capacitor. Google PatentsGoogle Scholar
  7. 7.
    Kötz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45(15):2483–2498CrossRefGoogle Scholar
  8. 8.
    Largeot C, Portet C, Chmiola J, Taberna P-L, Gogotsi Y, Simon P (2008) Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 130(9):2730–2731CrossRefGoogle Scholar
  9. 9.
    Xia K, Gao Q, Jiang J, Hu J (2008) Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials. Carbon 46(13):1718–1726CrossRefGoogle Scholar
  10. 10.
    Yu C, Masarapu C, Rong J, Wei B, Jiang H (2009) Stretchable supercapacitors based on buckled single‐walled carbon‐nanotube macrofilms. Adv Mater 21(47):4793–4797CrossRefGoogle Scholar
  11. 11.
    Futaba DN, Hata K, Yamada T, Hiraoka T, Hayamizu Y, Kakudate Y, Tanaike O, Hatori H, Yumura M, Iijima S (2006) Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat Mater 5(12):987–994CrossRefGoogle Scholar
  12. 12.
    Liu C, Yu Z, Neff D, Zhamu A, Jang BZ (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10(12):4863–4868CrossRefGoogle Scholar
  13. 13.
    Deng W, Ji X, Gómez-Mingot M, Lu F, Chen Q, Banks CE (2012) Graphene electrochemical supercapacitors: the influence of oxygen functional groups. Chem Commun 48(22):2770–2772CrossRefGoogle Scholar
  14. 14.
    Song W, Ji X, Deng W, Chen Q, Shen C, Banks CE (2013) Graphene ultracapacitors: structural impacts. Phys Chem Chem Phys 15(13):4799–4803CrossRefGoogle Scholar
  15. 15.
    Trasatti S, Buzzanca G (1971) Ruthenium dioxide: a new interesting electrode material. Solid state structure and electrochemical behaviour. J Electroanal Chem Interfacial Electrochem 29(2):A1–A5CrossRefGoogle Scholar
  16. 16.
    Alonso A, Ruiz V, Blanco C, Santamaria R, Granda M, Menendez R, De Jager S (2006) Activated carbon produced from Sasol-Lurgi gasifier pitch and its application as electrodes in supercapacitors. Carbon 44(3):441–446CrossRefGoogle Scholar
  17. 17.
    Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6):937–950CrossRefGoogle Scholar
  18. 18.
    Huang J, Sumpter BG, Meunier V (2008) A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chem Eur J 14(22):6614–6626CrossRefGoogle Scholar
  19. 19.
    Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12CrossRefGoogle Scholar
  20. 20.
    Snook GA, Chen GZ (2008) The measurement of specific capacitances of conducting polymers using the quartz crystal microbalance. J Electroanal Chem 612(1):140–146CrossRefGoogle Scholar
  21. 21.
    Yuan C, Wu HB, Xie Y, Lou XWD (2014) Mixed transition‐metal oxides: design, synthesis, and energy‐related applications. Angew Chem Int Ed 53(6):1488–1504CrossRefGoogle Scholar
  22. 22.
    Conway BE (1991) Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage. J Electrochem Soc 138(6):1539–1548CrossRefGoogle Scholar
  23. 23.
    Zhang LL, Zhao X (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520–2531CrossRefGoogle Scholar
  24. 24.
    Wu Z, Zhu Y, Ji X (2014) NiCo2O4-based materials for electrochemical supercapacitors. J Mater Chem A 2(36):14759–14772CrossRefGoogle Scholar
  25. 25.
    Deng W, Ji X, Chen Q, Banks CE (2011) Electrochemical capacitors utilising transition metal oxides: an update of recent developments. Rsc Adv 1(7):1171–1178CrossRefGoogle Scholar
  26. 26.
    Zheng J, Cygan P, Jow T (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc 142(8):2699–2703CrossRefGoogle Scholar
  27. 27.
    Zheng J, Jow T (1995) A new charge storage mechanism for electrochemical capacitors. J Electrochem Soc 142(1):L6–L8CrossRefGoogle Scholar
  28. 28.
    Sugimoto W, Iwata H, Yokoshima K, Murakami Y, Takasu Y (2005) Proton and electron conductivity in hydrous ruthenium oxides evaluated by electrochemical impedance spectroscopy: the origin of large capacitance. J Phys Chem B 109(15):7330–7338CrossRefGoogle Scholar
  29. 29.
    Zhou Z, Zhu Y, Wu Z, Lu F, Jing M, Ji X (2014) Amorphous RuO2 coated on carbon spheres as excellent electrode materials for supercapacitors. Rsc Adv 4(14):6927–6932CrossRefGoogle Scholar
  30. 30.
    Cui B, Lin H, Liu Y-Z, Li J-B, Sun P, Zhao X-C, Liu C-J (2009) Photophysical and photocatalytic properties of core-ring structured NiCo2O4 nanoplatelets. J Phys Chem C 113(32):14083–14087CrossRefGoogle Scholar
  31. 31.
    Marco J, Gancedo J, Gracia M, Gautier J, Rıos E, Berry F (2000) Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study. J Solid State Chem 153(1):74–81CrossRefGoogle Scholar
  32. 32.
    Wang X, Liu WS, Lu X, Lee PS (2012) Dodecyl sulfate-induced fast faradic process in nickel cobalt oxide–reduced graphite oxide composite material and its application for asymmetric supercapacitor device. J Mater Chem 22(43):23114–23119CrossRefGoogle Scholar
  33. 33.
    Li Y, Hasin P, Wu Y (2010) NixCo3−xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv Mater 22(17):1926–1929CrossRefGoogle Scholar
  34. 34.
    Rasiyah P, Tseung A, Hibbert D (1982) A mechanistic study of oxygen evolution on NiCo2O4 I. Formation of higher oxides. J Electrochem Soc 129(8):1724–1727CrossRefGoogle Scholar
  35. 35.
    Hu C-C, Chang K-H, Lin M-C, Wu Y-T (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6(12):2690–2695CrossRefGoogle Scholar
  36. 36.
    Ozolins V, Zhou F, Asta M (2013) Ruthenia-based electrochemical supercapacitors: insights from first-principles calculations. Acc Chem Res 46(5):1084–1093CrossRefGoogle Scholar
  37. 37.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828CrossRefGoogle Scholar
  38. 38.
    Han JH, Lee SW, Kim SK, Han S, Hwang CS, Dussarrat C, Gatineau J (2010) Growth of RuO2 thin films by pulsed-chemical vapor deposition using RuO4 precursor and 5% H2 reduction gas. Chem Mater 22(20):5700–5706CrossRefGoogle Scholar
  39. 39.
    Vetrone J, Foster C, Bai G, Wang A, Patel J, Wu X (1998) Growth, microstructure, and resistivity of RuO2 thin films grown by metal-organic chemical vapor deposition. J Mater Res 13(08):2281–2290CrossRefGoogle Scholar
  40. 40.
    Zhu Y, Ji X, Pan C, Sun Q, Song W, Fang L, Chen Q, Banks CE (2013) A carbon quantum dot decorated RuO2 network: outstanding supercapacitances under ultrafast charge and discharge. Energy Environ Sci 6(12):3665–3675CrossRefGoogle Scholar
  41. 41.
    Zhang J, Ma J, Zhang LL, Guo P, Jiang J, Zhao X (2010) Template synthesis of tubular ruthenium oxides for supercapacitor applications. J Phys Chem C 114(32):13608–13613CrossRefGoogle Scholar
  42. 42.
    Chen Y-M, Cai J-H, Huang Y-S, Lee K-Y, Tsai D-S, Tiong K-K (2011) A nanostructured electrode of IrOx foil on the carbon nanotubes for supercapacitors. Nanotechnology 22(35):355708CrossRefGoogle Scholar
  43. 43.
    Chen Y, Cai J, Huang Y, Lee K, Tsai D (2011) Preparation and characterization of iridium dioxide–carbon nanotube nanocomposites for supercapacitors. Nanotechnology 22(11):115706CrossRefGoogle Scholar
  44. 44.
    Du D, Hu Z, Liu Y, Deng Y, Liu J (2014) Preparation and characterization of flower-like microspheres of nano-NiO as electrode material for supercapacitor. J Alloys Compd 589:82–87CrossRefGoogle Scholar
  45. 45.
    Yu W, Jiang X, Ding S, Li BQ (2014) Preparation and electrochemical characteristics of porous hollow spheres of NiO nanosheets as electrodes of supercapacitors. J Power Sources 256:440–448CrossRefGoogle Scholar
  46. 46.
    Yang Z, Xu F, Zhang W, Mei Z, Pei B, Zhu X (2014) Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application. J Power Sources 246:24–31CrossRefGoogle Scholar
  47. 47.
    Huang M, Li F, Ji JY, Zhang YX, Zhao XL, Gao X (2014) Facile synthesis of single-crystalline NiO nanosheet arrays on Ni foam for high-performance supercapacitors. CrystEngComm 16(14):2878–2884CrossRefGoogle Scholar
  48. 48.
    Zhang X, Shi W, Zhu J, Zhao W, Ma J, Mhaisalkar S, Maria TL, Yang Y, Zhang H, Hng HH (2010) Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res 3(9):643–652CrossRefGoogle Scholar
  49. 49.
    Yang Q, Sha J, Ma X, Yang D (2005) Synthesis of NiO nanowires by a sol–gel process. Mater Lett 59(14):1967–1970CrossRefGoogle Scholar
  50. 50.
    Cheng J, Cao G-P, Yang Y-S (2006) Characterization of sol–gel-derived NiO x xerogels as supercapacitors. J Power Sources 159(1):734–741CrossRefGoogle Scholar
  51. 51.
    Xia X-H, Tu J-P, Wang X-l, Gu C-D, Zhao X-B (2011) Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material. J Mater Chem 21(3):671–679CrossRefGoogle Scholar
  52. 52.
    Justin P, Meher SK, Rao GR (2010) Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis. J Phys Chem C 114(11):5203–5210CrossRefGoogle Scholar
  53. 53.
    Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl Mater Interfaces 5(6):2188–2196CrossRefGoogle Scholar
  54. 54.
    Fan Z, Chen J, Cui K, Sun F, Xu Y, Kuang Y (2007) Preparation and capacitive properties of cobalt–nickel oxides/carbon nanotube composites. Electrochim Acta 52(9):2959–2965CrossRefGoogle Scholar
  55. 55.
    Zhao B, Song J, Liu P, Xu W, Fang T, Jiao Z, Zhang H, Jiang Y (2011) Monolayer graphene/NiO nanosheets with two-dimension structure for supercapacitors. J Mater Chem 21(46):18792–18798CrossRefGoogle Scholar
  56. 56.
    Subramanian V, Zhu H, Vajtai R, Ajayan P, Wei B (2005) Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J Phys Chem B 109(43):20207–20214CrossRefGoogle Scholar
  57. 57.
    Tao J, Liu N, Ma W, Ding L, Li L, Su J, Gao Y (2013) Solid-state high performance flexible supercapacitors based on polypyrrole-MnO2-carbon fiber hybrid structure. Sci Rep 3Google Scholar
  58. 58.
    Li X, Wang G, Wang X, Li X, Ji J (2013) Flexible supercapacitor based on MnO2 nanoparticles via electrospinning. J Mater Chem A 1(35):10103–10106CrossRefGoogle Scholar
  59. 59.
    Pang SC, Anderson MA, Chapman TW (2000) Novel electrode materials for thin‐film ultracapacitors: comparison of electrochemical properties of sol‐gel‐derived and electrodeposited manganese dioxide. J Electrochem Soc 147(2):444–450CrossRefGoogle Scholar
  60. 60.
    Kang J, Hirata A, Kang L, Zhang X, Hou Y, Chen L, Li C, Fujita T, Akagi K, Chen M (2013) Enhanced supercapacitor performance of MnO2 by atomic doping. Angew Chem 125(6):1708–1711CrossRefGoogle Scholar
  61. 61.
    Zhang X, Zhao D, Zhao Y, Tang P, Shen Y, Xu C, Li H, Xiao Y (2013) High performance asymmetric supercapacitor based on MnO2 electrode in ionic liquid electrolyte. J Mater Chem A 1(11):3706–3712CrossRefGoogle Scholar
  62. 62.
    Xiong S, Yuan C, Zhang X, Xi B, Qian Y (2009) Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. Chem- Eur J 15(21):5320–5326CrossRefGoogle Scholar
  63. 63.
    Xia X-H, Tu J-P, Mai Y-J, Wang X-l, Gu C-D, Zhao X-B (2011) Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance. J Mater Chem 21(25):9319–9325CrossRefGoogle Scholar
  64. 64.
    Dong X-C, Xu H, Wang X-W, Huang Y-X, Chan-Park MB, Zhang H, Wang L-H, Huang W, Chen P (2012) 3D graphene–cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6(4):3206–3213CrossRefGoogle Scholar
  65. 65.
    Xu K, Li W, Liu Q, Li B, Liu X, An L, Chen Z, Zou R, Hu J (2014) Hierarchical mesoporous NiCo2O4@ MnO2 core–shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors. J Mater Chem A 2(13):4795–4802CrossRefGoogle Scholar
  66. 66.
    Chen H, Jiang J, Zhang L, Qi T, Xia D, Wan H (2014) Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. J Power Sources 248:28–36CrossRefGoogle Scholar
  67. 67.
    Dalvi AD, Bacon WG, Osborne RC (2004) The past and the future of nickel laterites. In: PDAC 2004 international convention, trade show & investors exchange. The Prospectors and Developers Association of Canada, Toronto, pp 127Google Scholar
  68. 68.
    Hench LL, West JK (1990) The sol–gel process. Chem Rev 90(1):33–72CrossRefGoogle Scholar
  69. 69.
    Niederberger M (2007) Nonaqueous sol–gel routes to metal oxide nanoparticles. Acc Chem Res 40(9):793–800CrossRefGoogle Scholar
  70. 70.
    Livage J, Henry M, Sanchez C (1988) Sol–gel chemistry of transition metal oxides. Prog Solid State Chem 18(4):259–341CrossRefGoogle Scholar
  71. 71.
    Wei TY, Chen CH, Chien HC, Lu SY, Hu CC (2010) A cost‐effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide‐driven sol–gel process. Adv Mater 22(3):347–351CrossRefGoogle Scholar
  72. 72.
    Liu M-C, Kong L-B, Lu C, Li X-M, Luo Y-C, Kang L (2012) A sol–gel process for fabrication of NiO/NiCo2O4/Co3O4 composite with improved electrochemical behavior for electrochemical capacitors. ACS Appl Mater Interfaces 4(9):4631–4636CrossRefGoogle Scholar
  73. 73.
    Kong L-B, Lu C, Liu M-C, Luo Y-C, Kang L (2013) Effect of surfactant on the morphology and capacitive performance of porous NiCo2O4. J Solid State Electrochem 17(5):1463–1471CrossRefGoogle Scholar
  74. 74.
    Wu YQ, Chen XY, Ji PT, Zhou QQ (2011) Sol–gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors. Electrochim Acta 56(22):7517–7522CrossRefGoogle Scholar
  75. 75.
    Zhu Y, Ji X, Wu Z, Song W, Hou H, Wu Z, He X, Chen Q, Banks CE (2014) Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: Understanding of its electrochemical properties. J Power Sources 267:888–900CrossRefGoogle Scholar
  76. 76.
    Feng S, Xu R (2001) New materials in hydrothermal synthesis. Acc Chem Res 34(3):239–247CrossRefGoogle Scholar
  77. 77.
    Chen Y, Qu B, Hu L, Xu Z, Li Q, Wang T (2013) High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet–nanowire cluster arrays as self-supported electrodes. Nanoscale 5(20):9812–9820CrossRefGoogle Scholar
  78. 78.
    An C, Wang Y, Huang Y, Xu Y, Xu C, Jiao L, Yuan H (2014) Novel three-dimensional NiCo2O4 hierarchitectures: solvothermal synthesis and electrochemical properties. CrystEngComm 16(3):385–392CrossRefGoogle Scholar
  79. 79.
    Zou R, Xu K, Wang T, He G, Liu Q, Liu X, Zhang Z, Hu J (2013) Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors. J Mater Chem A 1(30):8560–8566CrossRefGoogle Scholar
  80. 80.
    Liu X, Zhang Y, Xia X, Shi S, Lu Y, Wang XL, Gu C, Tu J (2013) Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor. J Power Sources 239:157–163CrossRefGoogle Scholar
  81. 81.
    Wang X, Han X, Lim M, Singh N, Gan CL, Jan M, Lee PS (2012) Nickel cobalt oxide-single wall carbon nanotube composite material for superior cycling stability and high-performance supercapacitor application. J Phys Chem C 116(23):12448–12454CrossRefGoogle Scholar
  82. 82.
    Shen L, Che Q, Li H, Zhang X (2014) Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder‐free flexible electrodes for energy storage. Adv Funct Mater 24(18):2630–2637CrossRefGoogle Scholar
  83. 83.
    Zhang G, Lou XWD (2013) Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors. Sci Rep 3:1470Google Scholar
  84. 84.
    Zhu Y, Wu Z, Jing M, Song W, Hou H, Yang X, Chen Q, Ji X (2014) 3D network-like mesoporous NiCo2O4 nanostructures as advanced electrode material for supercapacitors. Electrochim Acta 149:144–151CrossRefGoogle Scholar
  85. 85.
    Musiani M (2000) Electrodeposition of composites: an expanding subject in electrochemical materials science. Electrochim Acta 45(20):3397–3402CrossRefGoogle Scholar
  86. 86.
    Du J, Zhou G, Zhang H, Cheng C, Ma J, Wei W, Chen L, Wang T (2013) Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors. ACS Appl Mater Interfaces 5(15):7405–7409CrossRefGoogle Scholar
  87. 87.
    Yuan C, Li J, Hou L, Zhang X, Shen L, Lou XWD (2012) Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv Funct Mater 22(21):4592–4597CrossRefGoogle Scholar
  88. 88.
    Huang L, Chen D, Ding Y, Wang ZL, Zeng Z, Liu M (2013) Hybrid composite Ni (OH) 2@ NiCo2O4 grown on carbon fiber paper for high-performance supercapacitors. ACS Appl Mater Interfaces 5(21):11159–11162CrossRefGoogle Scholar
  89. 89.
    Zhang G, Wang T, Yu X, Zhang H, Duan H, Lu B (2013) Nanoforest of hierarchical Co3O4@ NiCo2O4 nanowire arrays for high-performance supercapacitors. Nano Energy 2(5):586–594CrossRefGoogle Scholar
  90. 90.
    Chang S-K, Lee K-T, Zainal Z, Tan K-B, Yusof NA, Yusoff WMDW, Lee J-F, Wu N-L (2012) Structural and electrochemical properties of manganese substituted nickel cobaltite for supercapacitor application. Electrochim Acta 67:67–72CrossRefGoogle Scholar
  91. 91.
    Shakir I, Sarfraz M, Rana UA, Nadeem M, Al-Shaikh MA (2013) Synthesis of hierarchical porous spinel nickel cobaltite nanoflakes for high performance electrochemical energy storage supercapacitors. Rsc Adv 3(44):21386–21389CrossRefGoogle Scholar
  92. 92.
    Wu Z, Pu X, Zhu Y, Jing M, Chen Q, Jia X, Ji X (2015) Uniform porous spinel NiCo2O4 with enhanced electrochemical performances. J Alloys Compd 632:208–217CrossRefGoogle Scholar
  93. 93.
    Tseng C-C, Lee J-L, Liu Y-M, Ger M-D, Shu Y-Y (2013) Microwave-assisted hydrothermal synthesis of spinel nickel cobaltite and application for supercapacitors. J Taiwan Inst Chem Eng 44(3):415–419CrossRefGoogle Scholar
  94. 94.
    Hu C-C, Hsu C-T, Chang K-H, Hsu H-Y (2013) Microwave-assisted hydrothermal annealing of binary Ni–Co oxy-hydroxides for asymmetric supercapacitors. J Power Sources 238:180–189CrossRefGoogle Scholar
  95. 95.
    Yuan C, Li J, Hou L, Lin J, Pang G, Zhang L, Lian L, Zhang X (2013) Template-engaged synthesis of uniform mesoporous hollow NiCo2O4 sub-microspheres towards high-performance electrochemical capacitors. Rsc Adv 3(40):18573–18578CrossRefGoogle Scholar
  96. 96.
    Ding R, Qi L, Jia M, Wang H (2013) Hydrothermal and soft-templating synthesis of mesoporous NiCo2O4 nanomaterials for high-performance electrochemical capacitors. J Appl Electrochem 43(9):903–910CrossRefGoogle Scholar
  97. 97.
    Padmanathan N, Selladurai S (2013) Sonochemically precipitated spinel Co3O4 and NiCo2O4 nanostructures as an electrode materials for supercapacitor. In: American Institute of Physics conference series, pp 12161217Google Scholar
  98. 98.
    Salunkhe RR, Jang K, Yu H, Yu S, Ganesh T, Han S-H, Ahn H (2011) Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications. J Alloys Compd 509(23):6677–6682CrossRefGoogle Scholar
  99. 99.
    Zhu Y, Wu Z, Jing M, Hou H, Yang Y, Zhang Y, Yang X, Song W, Jia X, Ji X (2015) Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. J Mater Chem A 3(2):866–877CrossRefGoogle Scholar
  100. 100.
    Zhu Y, Pu X, Song W, Wu Z, Zhou Z, He X, Lu F, Jing M, Tang B, Ji X (2014) High capacity NiCo2O4 nanorods as electrode materials for supercapacitor. J Alloys Compd 617:988–993CrossRefGoogle Scholar
  101. 101.
    Li L, Peng S, Cheah Y, Teh P, Wang J, Wee G, Ko Y, Wong C, Srinivasan M (2013) Electrospun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors. Chem Eur J 19(19):5892–5898CrossRefGoogle Scholar
  102. 102.
    Hsieh Y-C, Lee K-T, Lin Y-P, Wu N-L, Donne SW (2008) Investigation on capacity fading of aqueous MnO2 · nH2O electrochemical capacitor. J Power Sources 177(2):660–664CrossRefGoogle Scholar
  103. 103.
    Kong L-B, Lu C, Liu M-C, Luo Y-C, Kang L, Li X, Walsh FC (2014) The specific capacitance of sol–gel synthesised spinel MnCo2O4 in an alkaline electrolyte. Electrochim Acta 115:22–27CrossRefGoogle Scholar
  104. 104.
    Chuang P-Y, Hu C-C (2005) The electrochemical characteristics of binary manganese–cobalt oxides prepared by anodic deposition. Mater Chem Phys 92(1):138–145CrossRefGoogle Scholar
  105. 105.
    Li L, He F, Gai S, Zhang S, Gao P, Zhang M, Chen Y, Yang P (2014) Hollow structured and flower-like C@ MnCo2O4 composite for high electrochemical performance in a supercapacitor. CrystEngComm 16(42):9873–9881CrossRefGoogle Scholar
  106. 106.
    Xu Y, Wang X, An C, Wang Y, Jiao L, Yuan H (2014) Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors. J Mater Chem A 2(39):16480–16488CrossRefGoogle Scholar
  107. 107.
    Wang Z, Zhang X, Li Y, Liu Z, Hao Z (2013) Synthesis of graphene–NiFe2O4 nanocomposites and their electrochemical capacitive behavior. J Mater Chem A 1(21):6393–6399CrossRefGoogle Scholar
  108. 108.
    Senthilkumar B, Vijaya Sankar K, Sanjeeviraja C, Kalai Selvan R (2013) Synthesis and physico-chemical property evaluation of PANI–NiFe2O4 nanocomposite as electrodes for supercapacitors. J Alloys Compd 553:350–357CrossRefGoogle Scholar
  109. 109.
    Sen P, De A (2010) Electrochemical performances of poly (3, 4-ethylenedioxythiophene)–NiFe2O4 nanocomposite as electrode for supercapacitor. Electrochim Acta 55(16):4677–4684CrossRefGoogle Scholar
  110. 110.
    Xiao K, Xia L, Liu G, Wang S, Ding L-X, Wang H (2015) Honeycomb-like NiMoO4 ultrathin nanosheet arrays for high-performance electrochemical energy storage. J Mater Chem A 3(11):6128–6135CrossRefGoogle Scholar
  111. 111.
    Peng S, Li L, Wu HB, Madhavi S, Lou XWD (2014) Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv Energy Mater 5(2):1401172CrossRefGoogle Scholar
  112. 112.
    Cai D, Liu B, Wang D, Liu Y, Wang L, Li H, Wang Y, Wang C, Li Q, Wang T (2014) Enhanced performance of supercapacitors with ultrathin mesoporous NiMoO4 nanosheets. Electrochim Acta 125:294–301CrossRefGoogle Scholar
  113. 113.
    Cai D, Liu B, Wang D, Liu Y, Wang L, Li H, Wang Y, Wang C, Li Q, Wang T (2014) Facile hydrothermal synthesis of hierarchical ultrathin mesoporous NiMoO4 nanosheets for high performance supercapacitors. Electrochim Acta 115:358–363CrossRefGoogle Scholar
  114. 114.
    Cai D, Wang D, Liu B, Wang Y, Liu Y, Wang L, Li H, Huang H, Li Q, Wang T (2013) Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. ACS Appl Mater Interfaces 5(24):12905–12910CrossRefGoogle Scholar
  115. 115.
    Guo D, Zhang P, Zhang H, Yu X, Zhu J, Li Q, Wang T (2013) NiMoO4 nanowires supported on Ni foam as novel advanced electrodes for supercapacitors. J Mater Chem A 1(32):9024–9027CrossRefGoogle Scholar
  116. 116.
    Guo D, Luo Y, Yu X, Li Q, Wang T (2014) High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 8:174–182CrossRefGoogle Scholar
  117. 117.
    Liu X, Zhang K, Yang B, Song W, Liu Q, Jia F, Qin S, Chen W, Lib J, Zhang Z (2015) Three-dimensional graphene supported nickel molybdate nanowires as novel ultralight and flexible electrode for supercapacitors. arXiv preprint arXiv:150201059Google Scholar
  118. 118.
    Yin Z, Zhang S, Chen Y, Gao P, Zhu C, Yang P, Qi L (2015) Hierarchical nanosheet-based NiMoO4 nanotubes: synthesis and high supercapacitor performance. J Mater Chem A 3(2):739–745CrossRefGoogle Scholar
  119. 119.
    Cai D, Wang D, Liu B, Wang L, Liu Y, Li H, Wang Y, Li Q, Wang T (2014) Three-dimensional Co3O4@ NiMoO4 core/shell nanowire arrays on Ni foam for electrochemical energy storage. ACS Appl Mater Interfaces 6(7):5050–5055CrossRefGoogle Scholar
  120. 120.
    Ma X-J, Kong L-B, Zhang W-B, Liu M-C, Luo Y-C, Kang L (2014) Design and synthesis of 3D Co3O4@ MMoO4 (M = Ni, Co) nanocomposites as high-performance supercapacitor electrodes. Electrochim Acta 130:660–669CrossRefGoogle Scholar
  121. 121.
    Hong W, Wang J, Gong P, Sun J, Niu L, Yang Z, Wang Z, Yang S (2014) Rational construction of three dimensional hybrid Co3O4@ NiMoO4 nanosheets array for energy storage application. J Power Sources 270:516–525CrossRefGoogle Scholar
  122. 122.
    Guo D, Ren W, Chen Z, Mao M, Li Q, Wang T (2015) NiMoO4 nanowire@ MnO2 nanoflake core/shell hybrid structure aligned on carbon cloth for high-performance supercapacitors. Rsc Adv 5(14):10681–10687CrossRefGoogle Scholar
  123. 123.
    Zhang Q, Deng Y, Hu Z, Liu Y, Yao M, Liu P (2014) Seaurchin-like hierarchical NiCo2O4@ NiMoO4 core–shell nanomaterials for high performance supercapacitors. Phys Chem Chem Phys 16(42):23451–23460CrossRefGoogle Scholar
  124. 124.
    Ren W, Guo D, Zhuo M, Guan B, Zhang D, Li Q (2015) NiMoO4@ Co(OH)2 core/shell structure nanowire arrays supported on Ni foam for high-performance supercapacitors. Rsc Adv 5(28):21881–21887CrossRefGoogle Scholar
  125. 125.
    Liu M-C, Kong L-B, Lu C, Ma X-J, Li X-M, Luo Y-C, Kang L (2013) Design and synthesis of CoMoO4–NiMoO4 · x H2O bundles with improved electrochemical properties for supercapacitors. J Mater Chem A 1(4):1380–1387CrossRefGoogle Scholar
  126. 126.
    Senthilkumar B, Meyrick D, Lee Y-S, Selvan RK (2013) Synthesis and improved electrochemical performances of nano β-NiMoO4–CoMoO4 · xH2O composites for asymmetric supercapacitors. Rsc Adv 3(37):16542–16548CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Zhibin Wu
    • 1
  • Yirong Zhu
    • 1
  • Xiaobo Ji
    • 1
    Email author
  • Craig E. Banks
    • 1
    • 2
  1. 1.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
  2. 2.Faculty of Science and Engineering, School of Chemistry and the Environment, Division of Chemistry and Environmental ScienceManchester Metropolitan UniversityLancsUK

Personalised recommendations