Advertisement

Black-Box Separations of Hash-and-Sign Signatures in the Non-Programmable Random Oracle Model

  • Zongyang Zhang
  • Yu ChenEmail author
  • Sherman S. M. Chow
  • Goichiro Hanaoka
  • Zhenfu Cao
  • Yunlei Zhao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9451)

Abstract

A popular methodology of designing cryptosystems with practical efficiency is to give a security proof in the random oracle (RO) model. The work of Fischlin and Fleischhacker (Eurocrypt ’13) investigated the case of Schnorr signature (and generally, Fiat-Shamir signatures) and showed the reliance of RO model is inherent.

We generalize their results to a large class of “malleable” hash-and-sign signatures, where one can efficiently “maul”any two valid signatures between two signature instances with different public keys if it can get the difference between the secret keys. We follow the technique of Fischlin and Fleischhacker to show that the security of malleable hash-and-sign signature cannot be reduced to its related hard cryptographic problem without programming the RO. Our proof assumes the hardness of a one-more cryptographic problem (depending on the signature instantiation). Our result applies to single-instance black-box reductions, subsuming those reductions used in existing proofs.

Our framework not only encompasses Fiat-Shamir signatures as special cases, but also covers \(\Gamma \)-signature (Yao and Zhao, IEEE Transactions on Information Forensics and Security ’13), and other schemes which implicitly used malleable hash-and-sign signatures, including Boneh-Franklin identity-based encryption, and Sakai-Ohgishi-Kasahara non-interactive identity-based key exchange.

Keywords

Black-box separations Hash-and-sign signatures Random oracle model Meta-reduction 

Notes

Acknowledgments

Zongyang Zhang is an International Research Fellow of JSPS and is supported by NSFC under grant No. 61303201. Yu Chen is supported by NSFC under Grant Nos. 61303257, 61379141, the IIE’s Cryptography Research Project, the Strategic Priority Research Program of CAS under Grant No. XDA06010701. Sherman S. M. Chow is supported by the Early Career Award and grants (CUHK 439713, 14201914) from the Research Grants Council, Hong Kong. Zhenfu Cao is supported by NSFC under Nos. 61411146001, 61321064, 61371083. Yunlei Zhao is supported by NSFC under Grant Nos.61272012, 61472084.

References

  1. 1.
    Ananth, P., Bhaskar, R.: Non observability in the random oracle model. In: Susilo, W., Reyhanitabar, R. (eds.) ProvSec 2013. LNCS, vol. 8209, pp. 86–103. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme. J. Cryptol. 16(3), 185–215 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bellare, M., Paterson, K.G., Thomson, S.: RKA security beyond the linear barrier: IBE, encryption and signatures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 331–348. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS, pp. 62–73. ACM (1993)Google Scholar
  5. 5.
    Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995) CrossRefGoogle Scholar
  6. 6.
    Bhattacharyya, R., Mukherjee, P.: Non-adaptive programmability of random oracle. Theoret. Comput. Sci. 592, 97–114 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, Y., Huang, Q., Zhang, Z.: Sakai-ohgishi-kasahara identity-based non-interactive key exchange scheme, revisited. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 274–289. Springer, Heidelberg (2014) Google Scholar
  11. 11.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  12. 12.
    Cui, Y., Fujisaki, E., Hanaoka, G., Imai, H., Zhang, R.: Formal security treatments for IBE-to-signature transformation: relations among security notions. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 92(1), 53–66 (2009)CrossRefGoogle Scholar
  13. 13.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987) CrossRefGoogle Scholar
  14. 14.
    Fischlin, M., Fleischhacker, N.: Limitations of the meta-reduction technique: the case of schnorr signatures. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 444–460. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  15. 15.
    Fischlin, M., Lehmann, A., Ristenpart, T., Shrimpton, T., Stam, M., Tessaro, S.: Random oracles with(out) programmability. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 303–320. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  16. 16.
    Fleischhacker, N., Jager, T., Schröder, D.: On tight security proofs for schnorr signatures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 512–531. Springer, Heidelberg (2014) Google Scholar
  17. 17.
    Freire, E.S.V., Hofheinz, D., Paterson, K.G., Striecks, C.: Programmable hash functions in the multilinear setting. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 513–530. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  18. 18.
    Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  19. 19.
    Fukumitsu, M., Hasegawa, S.: Black-box separations on fiat-shamir-type signatures in the non-programmable random oracle model. In: López, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 3–20. Springer, Heidelberg (2015) CrossRefGoogle Scholar
  20. 20.
    Galindo, D.: Boneh-franklin identity based encryption revisited. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 791–802. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  21. 21.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  22. 22.
    Goh, E.J., Jarecki, S., Katz, J., Wang, N.: Efficient signature schemes with tight reductions to the Diffie-Hellman problems. J. Cryptol. 20(4), 493–514 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: FOCS, pp. 102–113. IEEE Computer Society (2003)Google Scholar
  24. 24.
    Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  25. 25.
    Nishioka, M.: Reconsideration on the security of the boneh-franklin identity-based encryption scheme. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 270–282. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  26. 26.
    Paterson, K.G., Srinivasan, S.: On the relations between non-interactive key distribution, identity-based encryption and trapdoor discrete log groups. Des. Codes Crypt. 52(2), 219–241 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)CrossRefzbMATHGoogle Scholar
  28. 28.
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: The 2000 Symposium on Cryptography and Information Security, vol. 45, pp. 26–28, Japan (2000)Google Scholar
  29. 29.
    Schnorr, C.-P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (1990) Google Scholar
  30. 30.
    Seurin, Y.: On the exact security of schnorr-type signatures in the random oracle model. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 554–571. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  31. 31.
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997) CrossRefGoogle Scholar
  32. 32.
    Shoup, V.: A proposal for an ISO standard for public key encryption. In: Cryptology ePrint Archive, Report 2001/112 (2001). http://eprint.iacr.org/
  33. 33.
    Wee, H.: Zero knowledge in the random oracle model, revisited. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 417–434. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  34. 34.
    Yao, A.C.C., Zhao, Y.: Online/offline signatures for low-power devices. IEEE Trans. Inf. Forensics Secur. 8(2), 283–294 (2013)CrossRefGoogle Scholar
  35. 35.
    Zhang, J., Zhang, Z., Chen, Y., Guo, Y., Zhang, Z.: Black-box separations for one-more (Static) CDH and its generalization. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 366–385. Springer, Heidelberg (2014) Google Scholar
  36. 36.
    Zhang, R., Imai, H.: Improvements on security proofs of some identity based encryption schemes. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 28–41. Springer, Heidelberg (2005) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Zongyang Zhang
    • 1
  • Yu Chen
    • 2
    • 3
    Email author
  • Sherman S. M. Chow
    • 3
  • Goichiro Hanaoka
    • 1
  • Zhenfu Cao
    • 4
  • Yunlei Zhao
    • 5
  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.State Key Laboratory of Information Security (SKLOIS), Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  3. 3.Department of Information EngineeringChinese University of Hong KongShatinHong Kong
  4. 4.East China Normal UniversityShanghaiChina
  5. 5.Software SchoolFudan UniversityShanghaiChina

Personalised recommendations