Efficient Unconditionally Secure Comparison and Privacy Preserving Machine Learning Classification Protocols

  • Bernardo David
  • Rafael Dowsley
  • Raj Katti
  • Anderson C. A. Nascimento
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9451)


We propose an efficient unconditionally secure protocol for privacy preserving comparison of \(\ell \)-bit integers when both integers are shared between two semi-honest parties. Using our comparison protocol as a building block, we construct two-party generic private machine learning classifiers. In this scenario, one party holds an input while the other holds a model and they wish to classify the input according to the model without revealing their private information to each other. Our constructions are based on the setup assumption that there exists pre-distributed correlated randomness available to the computing parties, the so-called commodity-based model. The protocols are storage and computationally efficient, consisting only of additions and multiplications of integers.


Secure comparison Private machine learning Unconditional security Commodity based model 


  1. 1.
    Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the k th-ranked element. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 40–55. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  2. 2.
    Beaver, D.: Precomputing oblivious transfer. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 97–109. Springer, Heidelberg (1995) Google Scholar
  3. 3.
    Beaver, D.: Commodity-based cryptography (extended abstract). In: 29th ACM STOC, pp. 446–455. ACM Press (1997)Google Scholar
  4. 4.
    Beaver, D.: One-time tables for two-party computation. In: Hsu, W.-L., Kao, M.-Y. (eds.) COCOON 1998. LNCS, vol. 1449, pp. 361–370. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  5. 5.
    Beaver, D.: Server-assisted cryptography. In: NSPW 1998, pp. 92–106. ACM, New York (1998)Google Scholar
  6. 6.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th ACM STOC, pp. 1–10. ACM Press (1988)Google Scholar
  7. 7.
    Blake, I.F., Kolesnikov, V.: Strong conditional oblivious transfer and computing on intervals. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 515–529. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  8. 8.
    Blake, I.F., Kolesnikov, V.: Conditional encrypted mapping and comparing encrypted numbers. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 206–220. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  9. 9.
    Blundo, C., Masucci, B., Stinson, D.R., Wei, R.: Constructions and bounds for unconditionally secure non-interactive commitment schemes. Des. Codes Crypt. 26(1–3), 97–110 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bogetoft, P., Christensen, D.L., Damgård, I., Geisler, M., Jakobsen, T., Krøigaard, M., Nielsen, J.D., Nielsen, J.B., Nielsen, K., Pagter, J., Schwartzbach, M., Toft, T.: Secure multiparty computation goes live. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  11. 11.
    Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. Cryptology ePrint Archive, Report 2014/331 (2014).
  12. 12.
    Brickell, J., Shmatikov, V.: Privacy-preserving graph algorithms in the semi-honest model. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 236–252. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  13. 13.
    Brickell, J., Shmatikov, V.: Privacy-preserving classifier learning. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 128–147. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  14. 14.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001)Google Scholar
  16. 16.
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press (1988)Google Scholar
  17. 17.
    Damgård, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  18. 18.
    Ivan, D., Martin, G., Mikkel, K.: Homomorphic encryption and secure comparison. IJACT 1(1), 22–31 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Damgård, I., Geisler, M., Krøigaard, M.: A correction to ‘efficient and secure comparison for on-line auctions’. IJACT 1(4), 323–324 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  21. 21.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  22. 22.
    Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-protocol secure two-party computation. In: NDSS 2015. The Internet Society (2015)Google Scholar
  23. 23.
    Dowsley, R., van de Graaf, J., Marques, D., Nascimento, A.C.A.: A two-party protocol with trusted initializer for computing the inner product. In: Chung, Y., Yung, M. (eds.) WISA 2010. LNCS, vol. 6513, pp. 337–350. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  24. 24.
    Dowsley, R., Müller-Quade, J., Otsuka, A., Hanaoka, G., Imai, H., Nascimento, A.C.A.: Universally composable and statistically secure verifiable secret sharing scheme based on pre-distributed data. IEICE Trans. 94–A(2), 725–734 (2011)CrossRefGoogle Scholar
  25. 25.
    Fischlin, M.: A cost-effective pay-per-multiplication comparison method for millionaires. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 457–471. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  26. 26.
    Garay, J.A., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 330–342. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  27. 27.
    Gilboa, N.: Two party RSA key generation (extended abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 116. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  28. 28.
    Graepel, T., Lauter, K., Naehrig, M.: ML confidential: machine learning on encrypted data. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 1–21. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  29. 29.
    Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On the power of correlated randomness in secure computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  30. 30.
    Katti, R.S., Ababei, C.: Secure comparison without explicit XOR. In: CoRR, abs/1204.2854 (2012)Google Scholar
  31. 31.
    Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: 1st ACM Conference on Electronic Commerce, pp. 129–139, New York, NY, USA (1999)Google Scholar
  32. 32.
    Nascimento, A.C.A., Müller-Quade, J., Otsuka, A., Hanaoka, G., Imai, H.: Unconditionally secure homomorphic pre-distributed bit commitment and secure two-party computations. In: Boyd, C., Mao, W. (eds.) ISC 2003. LNCS, vol. 2851, pp. 151–164. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  33. 33.
    Nascimento, A.C.A., Müller-Quade, J., Otsuka, A., Hanaoka, G., Imai, H.: Unconditionally non-interactive verifiable secret sharing secure against faulty majorities in the commodity based model. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 355–368. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  34. 34.
    Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-preserving ridge regression on hundreds of millions of records. In: 2013 IEEE Symposium on Security and Privacy, pp. 334–348. IEEE Computer Society Press (2013)Google Scholar
  35. 35.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  36. 36.
    Pullonen, P.: Actively secure two-party computation: efficient beaver triple generation. Master’s thesis, University of Tartu (2013)Google Scholar
  37. 37.
    Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: 21st ACM STOC, pp. 73–85. ACM Press (1989)Google Scholar
  38. 38.
    Rivest, R.L.: Unconditionally secure commitment and oblivious transfer schemes using private channels and a trusted initializer (1999).
  39. 39.
    Toft, T.: Constant-rounds, almost-linear bit-decomposition of secret shared values. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 357–371. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  40. 40.
    Tonicelli, R., David, B.M., de Morais Alves, V.: Universally composable private proximity testing. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 222–239. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  41. 41.
    Tonicelli, R., Nascimento, A.C., Dowsley, R., Müller-Quade, J., Imai, H., Hanaoka, G., Otsuka, A.: Information-theoretically secure oblivious polynomial evaluation in the commodity-based model. Int. J. Inf. Secur. 14(1), 73–84 (2015)CrossRefGoogle Scholar
  42. 42.
    Tschiatschek, S., Reinprecht, P., Mücke, M., Pernkopf, F.: Bayesian network classifiers with reduced precision parameters. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012, Part I. LNCS, vol. 7523, pp. 74–89. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  43. 43.
    Veugen, T.: Linear round bit-decomposition of secret-shared values. IEEE Trans. Inf. Forensics Secur. 10(3), 498–506 (2015)CrossRefGoogle Scholar
  44. 44.
    Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: 23rd FOCS, pp. 160–164. IEEE Computer Society Press (1982)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Bernardo David
    • 1
  • Rafael Dowsley
    • 2
  • Raj Katti
    • 3
  • Anderson C. A. Nascimento
    • 3
  1. 1.Aarhus UniversityAarhusDenmark
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.University of Washington TacomaTacomaUSA

Personalised recommendations