HyperFlex: A Model Driven Toolchain for Designing and Configuring Software Control Systems for Autonomous Robots

Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 625)

Abstract

A huge corpus of open source robotic software libraries is available on ROS repositories that can be reused to develop a large variety of robot control systems. The difficult challenge consists in selecting and integrating a coherent set of components that provide the required functionality taking into account their mutual dependencies and architectural mismatches. The HyperFlex approach presented in this chapter enables the explicit representation of robot system architectures, functional variability, and application requirements as software models that can be manipulated by a system configuration engine.

Keywords

Model driven engineering Software variability Robotics 

Notes

Acknowledgments

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (2007–2013) under grant agreement no. FP7-ICT-231940-BRICS (Best Practice in Robotics). The authors would like to thank all the partners of the BRICS project for their valuable comments.

References

  1. 1.
    The Eclipse Modeling Project (2013), http://www.eclipse.org/modeling
  2. 2.
    The HyperFlex Toolchain (2014), http://robotics.unibg.it/hyperflex/
  3. 3.
    AUTomotive Open System ARchitecture (2015), http://www.autosar.org/
  4. 4.
    Common Variability Language (2015), http://www.omgwiki.org/variability
  5. 5.
    A. Abele, H. Lönn, M.-O. Reiser, M. Weber, H. Glathe, EPM: a prototype tool for variability management in component hierarchies, in Proceedings of the 16th International Software Product Line Conference vol. 2 (ACM, 2012), pp. 246–249Google Scholar
  6. 6.
    N. Ando, S. Kurihara, G. Biggs, T. Sakamoto, H. Nakamoto, T. Kotoku, Software deployment infrastructure for component based RT-systems. J. Robot. Mechatron. 23(3), 350–359 (2011)Google Scholar
  7. 7.
    R. Bischoff, et al., Brics-best practice in robotics, in Robotics (ISR), 2010 41st International Symposium on and 2010 6th German Conference on Robotics (ROBOTIK) (VDE, 2010), pp. 1–8Google Scholar
  8. 8.
    D. Brugali, A. Fernandes da Fonseca, A. Luzzana, Y. Maccarana, Developing service oriented robot control system, in 8th International Symposium on Service-Oriented System Engineering, Oxford, UK, 7–10 Apr 2014. IEEEGoogle Scholar
  9. 9.
    D. Brugali, L. Gherardi, M. Klotzbuecher, H. Bruyninckx, Service component architecture in robotics: the SCA-Orocos integration, in International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (Springer, 2011), pp. 46–60Google Scholar
  10. 10.
    E. Cirilo, U. Kulesza, C. Lucena, A product derivation tool based on model-driven techniques and annotations. J. Univ. Comput. Sci. 14(8), 1344–1367 (2008)Google Scholar
  11. 11.
    P.C. Clements, L. Northrop. Software Product Lines: Practices and Patterns. SEI Series in Software Engineering (Addison-Wesley, Boston, 2001)Google Scholar
  12. 12.
    S. Cousins, B. Gerkey, K. Conley, W. Garage, Sharing software with ROS [ROS topics]. IEEE Robot. Autom. Mag. 17(2), 12–14 (2010)CrossRefGoogle Scholar
  13. 13.
    S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, M. Ziane. RobotML, a domain-specific language to design, simulate and deploy robotic applications, in Simulation, Modeling, and Programming for Autonomous Robots (Springer, 2012), pp. 149–160Google Scholar
  14. 14.
    E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Abstraction and Reuse of Object-Oriented Design (Springer, New York, 1995)Google Scholar
  15. 15.
    L. Gherardi, D. Brugali, An eclipse-based feature models toolchain, in 6th Italian Workshop on Eclipse Technologies (EclipseIT 2011), 2011Google Scholar
  16. 16.
    L. Gherardi, D. Brugali, Modeling and reusing robotic software architectures: the HyperFlex toolchain, in IEEE International Conference on Robotics and Automation (ICRA 2014), Hong Kong, China, 31 May–5 June 2014. IEEEGoogle Scholar
  17. 17.
    N. Hochgeschwender, L. Gherardi, A. Shakhirmardanov, G. Kraetzschmar, D. Brugali, H. Bruyninckx, A model-based approach to software deployment in robotics, in 26th IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013), Tokyo, Japan, 3–7 Nov 2013. IEEE/RJSGoogle Scholar
  18. 18.
    M. Jan, et al., Flex-eware: a flexible model driven solution for designing and implementing embedded distributed systems. Softw. Pract. Exper. 42(12) (2012)Google Scholar
  19. 19.
    K. Kang, Feature-oriented domain analysis (FODA) feasibility study (Technical report, DTIC Document, 1990)Google Scholar
  20. 20.
    A. Lotz, et al., Managing run-time variability in robotics software by modeling functional and non-functional behavior, in Enterprise, Business-Process and Information Systems Modeling (Springer, New York, 2013), pp. 441–455Google Scholar
  21. 21.
    E.Y. Nakagawa, P.O. Antonino, M. Becker, Reference architecture and product line architecture: a subtle but critical difference, in Proceedings of the 5th European Conference on Software Architecture, ECSA’11 (Springer, Berlin, Heidelberg, 2011), pp. 207–211Google Scholar
  22. 22.
    M.-O. Reiser, R.T. Kolagari, M. Weber, Compositional variability-concepts and patterns, in 42nd Hawaii International Conference on System Sciences, 2009. HICSS’09 (IEEE, 2009), pp. 1–10Google Scholar
  23. 23.
    D. Schmidt, Guest editor’s introduction: model-driven engineering. Computer 39(2), 25–31 (2006)CrossRefGoogle Scholar
  24. 24.
    R. Smits, H. Bruyninckx, Composition of complex robot applications via data flow integration, in 2011 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2011), pp. 5576–5580Google Scholar
  25. 25.
    R. van Ommering, Mechanisms for handling diversity in a product population, in Fourth International Software Architecture Workshop, Citeseer, 2000Google Scholar
  26. 26.
    J. Whittle, J. Hutchinson, M. Rouncefield, The state of practice in model-driven engineering. IEEE Softw. 31(3), 79–85 (2014). MayCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Engineering, DIGIPUniversity of BergamoBergamoItaly
  2. 2.Institute for Dynamic Systems and ControlETH ZurichZurichSwitzerland

Personalised recommendations