Skip to main content

Mechanisms of l-Arginine-Auxotrophic Response and Their Cancer Therapeutic Implications

  • Chapter
  • First Online:
L-Arginine in Clinical Nutrition

Part of the book series: Nutrition and Health ((NH))

  • 1407 Accesses

Abstract

l-arginine (Arg) is a semi-essential amino acid. Because there is no specific storage system for the cellular l-Arg pool, Arg needs to be de novo synthesized or directly acquired from an extracellular source to meet physiological need. Different organs have different requirements of Arg. For example, sufficient Arg is synthesized in the liver and kidney of an adult but not sufficient to the growing child (Chaveroux et al. Biochimie 92:736–745, 2010). Arg is essential for fetuses and neonates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaveroux C, Lambert-Langlais S, Cherasse Y, et al. Molecular mechanisms involved in the adaptation to amino acid limitation in mammals. Biochimie. 2010;92:736–45.

    Article  CAS  PubMed  Google Scholar 

  2. Beaud et al, O’Brien WE, Bock HG, et al. The human argininosuccinate synthetase locus and citrullinemia. Adv Hum Genet. 1986;15:161–96, 291–2.

    Google Scholar 

  3. Erez A. Argininosuccinic aciduria: from a monogenic to a complex disorder. Genet Med. 2013;15:251–7.

    Article  CAS  PubMed  Google Scholar 

  4. Kilberg MS, Balasubramanian M, Fu L, Shan J. The transcription factor network associated with the amino acid response in mammalian cells. Adv Nutr. 2012;3:295–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Salzer W, Seibel N, Smith M. Erwinia asparaginase in pediatric acute lymphoblastic leukemia. Expert Opin Biol Ther. 2012;12:1407–14.

    Article  CAS  PubMed  Google Scholar 

  6. Dillon BJ, Prieto VG, Curley SA, et al. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers: a method for identifying cancers sensitive to l-arginine deprivation. Cancer. 2004;100:826–33.

    Article  CAS  PubMed  Google Scholar 

  7. Allen MD, Luong P, Hudson C, et al. Prognostic and therapeutic impact of argininosuccinate synthetase 1 control in bladder cancer as monitored longitudinally by PET imaging. Cancer Res. 2014;74:896–907.

    Article  CAS  PubMed  Google Scholar 

  8. Kelly MP, Jungbluth AA, Wu BW, et al. l-Arginine deiminase PEG20 inhibits growth of small cell lung cancers lacking expression of argininosuccinate synthetase. Br J Cancer. 2012;106:324–32.

    Article  CAS  PubMed  Google Scholar 

  9. Huang HY, Wu WR, Wang YH, et al. ASS1 as a novel tumor suppressor gene in myxofibrosarcomas: aberrant loss via epigenetic DNA methylation confers aggressive phenotypes, negative prognostic impact, and therapeutic relevance. Clin Cancer Res. 2013;19:2861–72.

    Article  CAS  PubMed  Google Scholar 

  10. Feun LG, Marini A, Walker G, et al. Negative argininosuccinate synthetase expression in melanoma tumours may predict clinical benefit from l-arginine-depleting therapy with pegylated l-arginine deiminase. Br J Cancer. 2012;106:1481–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang TS, Lu SN, Chao Y, et al. A randomised phase II study of pegylated l-arginine deiminase (ADI-PEG20) in Asian advanced hepatocellular carcinoma patients. Br J Cancer. 2010;103:954–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Glazer ES, Piccirillo M, Albino V, et al. Phase II study of pegylated l-arginine deiminase for nonresectable and metastatic hepatocellular carcinoma. J Clin Oncol. 2010;28:2220–6.

    Article  CAS  PubMed  Google Scholar 

  13. Kuo MT, Savaraj N, Feun LG. Targeted cellular metabolism for cancer chemotherapy with recombinant l-arginine-degrading enzymes. Oncotarget. 2010;1:246–51.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tanios R, Bekdash A, Kassab E, et al. Human recombinant arginase I(Co)-PEG5000 [HuArgI(Co)-PEG5000]-induced l-arginine depletion is selectively cytotoxic to human acute myeloid leukemia cells. Leuk Res. 2013;37:1565–71.

    Article  CAS  PubMed  Google Scholar 

  15. Stone EM, Glazer ES, Chantranupong L, et al. Replacing Mn(2+) with Co(2+) in human arginase i enhances cytotoxicity toward l-arginine auxotrophic cancer cell lines. ACS Chem Biol. 2010;5:333–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tsui SM, Lam WM, Lam TL, et al. Pegylated derivatives of recombinant human arginase (rhArg1) for sustained in vivo activity in cancer therapy: preparation, characterization and analysis of their pharmacodynamics in vivo and in vitro and action upon hepatocellular carcinoma cell (HCC). Cancer Cell Int. 2009;9:9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lam TL, Wong GK, Chong HC, et al. Recombinant human arginase inhibits proliferation of human hepatocellular carcinoma by inducing cell cycle arrest. Cancer Lett. 2009;277:91–100.

    Article  CAS  PubMed  Google Scholar 

  18. Delage B, Luong P, Maharaj L, et al. Promoter methylation of argininosuccinate synthetase-1 sensitises lymphomas to l-arginine deiminase treatment, autophagy and caspase-dependent apoptosis. Cell Death Dis. 2012;3:e342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Szlosarek PW, Luong P, Phillips MM, et al. Metabolic response to pegylated l-arginine deiminase in mesothelioma with promoter methylation of argininosuccinate synthetase. J Clin Oncol. 2013;31:e111–3.

    Article  PubMed  Google Scholar 

  20. Tsai WB, Aiba I, Lee SY, et al. Resistance to l-arginine deiminase treatment in melanoma cells is associated with induced argininosuccinate synthetase expression involving c-Myc/HIF-1alpha/Sp4. Mol Cancer Ther. 2009;8:3223–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hann SR, Eisenman RN. Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Mol Cell Biol. 1984;4:2486–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tsai WB, Aiba I, Long Y, et al. Activation of Ras/PI3K/ERK pathway induces c-Myc stabilization to upregulate argininosuccinate synthetase, leading to l-arginine deiminase resistance in melanoma cells. Cancer Res. 2012;72:2622–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thomas LR, Tansey WP. Proteolytic control of the oncoprotein transcription factor Myc. Adv Cancer Res. 2011;110:77–106.

    Article  CAS  PubMed  Google Scholar 

  24. Yada M, Hatakeyama S, Kamura T, et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 2004;23:2116–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Popov N, Wanzel M, Madiredjo M, et al. The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol. 2007;9:765–74.

    Article  CAS  PubMed  Google Scholar 

  26. Sears R, Nuckolls F, Haura E, et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 2000;14:2501–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sears RC. The life cycle of C-myc: from synthesis to degradation. Cell Cycle. 2004;3:1133–7.

    Article  CAS  PubMed  Google Scholar 

  28. Stephen AG, Esposito D, Bagni RK, et al. Dragging Ras Back in the Ring. Cancer Cell. 2014;25:272–81.

    Article  CAS  PubMed  Google Scholar 

  29. Grandori C, Cowley SM, James LP, et al. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol. 2000;16:653–99.

    Article  CAS  PubMed  Google Scholar 

  30. Semenza GL. Hypoxia and cancer. Cancer Metastasis Rev. 2007;26:223–4.

    Article  CAS  PubMed  Google Scholar 

  31. Dang CV, O’Donnell KA, Zeller KI, et al. The c-Myc target gene network. Semin Cancer Biol. 2006;16:253–64.

    Article  CAS  PubMed  Google Scholar 

  32. Long Y, Tsai WB, Wangpaichitr M, et al. l-Arginine deiminase resistance in melanoma cells is associated with metabolic reprogramming, glucose dependence and glutamine addiction. Mol Cancer Ther. 2013;12:2581–90.

    Article  CAS  PubMed  Google Scholar 

  33. Kim RH, Coates JM, Bowles TL, et al. l-Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res. 2009;69:700–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oyadomari S, Gotoh T, Aoyagi K, et al. Coinduction of endothelial nitric oxide synthase and l-arginine recycling enzymes in aorta of diabetic rats. Nitric Oxide. 2001;5:252–60.

    Google Scholar 

  35. Erez A, Nagamani SC, Shchelochkov OA, et al. Requirement of argininosuccinate lyase for systemic nitric oxide production. Nat Med. 2011;17:1619–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Richards NG, Kilberg MS. Asparagine synthetase chemotherapy. Annu Rev Biochem. 2006;75:629–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu PD, Harding HP, Ron D. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol. 2004;167:27–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vattem KM, Wek RC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A. 2004;101:11269–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Workman P, Clarke PA, Raynaud FI, van Montfort RL. Drugging the PI3 kinome: from chemical tools to drugs in the clinic. Cancer Res. 2010;70:2146–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Calleja V, Laguerre M, Parker PJ, et al. Role of a novel PH-kinase domain interface in PKB/Akt regulation: structural mechanism for allosteric inhibition. PLoS Biol. 2009;7:e17.

    Article  PubMed  Google Scholar 

  41. Gills JJ, Dennis PA. Perifosine: update on a novel Akt inhibitor. Curr Oncol Rep. 2009;11:102–10.

    Article  CAS  PubMed  Google Scholar 

  42. Fruman DA, Rommel C. PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov. 2014;13:140–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Delmore JE, Issa GC, Lemieux ME, et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell. 2011;146:904–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sullivan RJ, Flaherty KT. Resistance to BRAF-targeted therapy in melanoma. Eur J Cancer. 2013;49:1297–304.

    Article  CAS  PubMed  Google Scholar 

  45. Flaherty KT, Infante JR, Daud A, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367:1694–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Crawford LJ, Irvine AE. Targeting the ubiquitin proteasome system in haematological malignancies. Blood Rev. 2013;27:297–304.

    Article  CAS  PubMed  Google Scholar 

  47. Redic K. Carfilzomib: a novel agent for multiple myeloma. J Pharm Pharmacol. 2013;65:1095–106.

    Article  CAS  PubMed  Google Scholar 

  48. Qiu F, Chen YR, Liu X, et al. l-Arginine starvation impairs mitochondrial respiratory function in ASS1-deficient breast cancer cells. Sci Signal. 2014;7:ra31.

    Article  PubMed  PubMed Central  Google Scholar 

  49. You M, Savaraj N, Kuo MT, et al. TRAIL induces autophagic protein cleavage through caspase activation in melanoma cell lines under l-arginine deprivation. Mol Cell Biochem. 2013;374:181–90.

    Article  CAS  PubMed  Google Scholar 

  50. Karnoub AE, Weinberg RA. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol. 2008;9:517–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Bin Tsai PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tsai, WB., Long, Y., Savaraj, N., Feun, L.G., Kuo, M.T. (2017). Mechanisms of l-Arginine-Auxotrophic Response and Their Cancer Therapeutic Implications. In: Patel, V., Preedy, V., Rajendram, R. (eds) L-Arginine in Clinical Nutrition. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-26009-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26009-9_44

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-26007-5

  • Online ISBN: 978-3-319-26009-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics