Advertisement

l-Arginine in the Uterus and Placenta and During Gestation in Mammals

  • Jonathan M. Greene
  • Peter L. Ryan
Chapter
Part of the Nutrition and Health book series (NH)

Abstract

Often considered to be one of the most versatile amino acids, l-arginine is classified as a basic, cationic amino acid with three amine groups comprising a guanidino group in the side chain. l-arginine was first isolated from lupin seedlings by Schulze and Steiger (Z Physiol Chem 11:43–65, 1886), and shortly thereafter, Hedin (Z Physiol Chem 21:297–305, 1895) discovered that l-arginine is a component of animal proteins (as reviewed by Wu and Morris, Biochem J 336(Pt 1):1–17, 1998). Following the discovery of l-arginine, many efforts to determine its essentiality or dispensability were undertaken with a definitive answer still being debated today. The results from Scull and Rose (J Biol Chem 89(1):109–123, 1930) suggested that l-arginine was a dispensable or nonessential amino acid. This finding was repeated in humans by Rose and colleagues (J Biol Chem 206(1):421–430, 1954) who reported that removal of l-arginine from the diet did not result in a negative nitrogen balance in adult males.

Keywords

l-arginine Nitric oxide Polyamines Uterus Placenta Pregnancy Gestation 

References

  1. 1.
    Schulze E, Steiger E. Über das Arginin. Z Physiol Chem. 1886;11:43–65.Google Scholar
  2. 2.
    Hedin SG. Eine methode das lysin zu isolieren, nebst einigen Bemerkungen über das lysatinin. Z Physiol Chem. 1895;21:297–305.CrossRefGoogle Scholar
  3. 3.
    Wu G, Morris Jr SM. l-Arginine metabolism: nitric oxide and beyond. Biochem J. 1998;336(Pt 1):1–17.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Scull CW, Rose WC. l-Arginine metabolism: I. The relation of the l-arginine content of the diet to the increments in tissue l-arginine during growth. J Biol Chem. 1930;89(1):109–23.Google Scholar
  5. 5.
    Rose WC, Haines WJ, Warner DT. The amino acid requirements of man: V. The role of lysine, l-arginine, and tryptophan. J Biol Chem. 1954;206(1):421–30.PubMedGoogle Scholar
  6. 6.
    Arnold A, Kline OL, Elvehjem CA, Hart EB. Further studies on the growth factor required by chicks: the essential nature of l-arginine. J Biol Chem. 1936;116(2):699–709.Google Scholar
  7. 7.
    Klose AA, Stokstad ELR, Almquist HJ. The essential nature of l-arginine in the diet of the chick. J Biol Chem. 1938;123(3):691–8.Google Scholar
  8. 8.
    Borman A, Wood TR, Black HC, et al. The role of l-arginine in the growth with some observations on the effects of arginic acid. J Biol Chem. 1946;166(2):585–94.PubMedGoogle Scholar
  9. 9.
    Visek WJ. l-Arginine needs, physiological state and usual diets. A reevaluation. J Nutr. 1986;116(1):36–46.PubMedGoogle Scholar
  10. 10.
    Bartol FF. Uterus, Nonhuman. In: Knobil E, Neill JD, editors. Encyclopedia of reproduction, vol. 4. San Diego, CA: Academic; 1998. p. 950–60.Google Scholar
  11. 11.
    Senger PL. Pathways to pregnancy and parturition. 2nd ed. Pullman, WA: Current Conceptions; 2003.Google Scholar
  12. 12.
    Constantinescu GM. Anatomy of reproductive organs. In: Schatten H, Constantinescu GM, editors. Comparative reproductive biology. Ames, IA: Blackwell; 2007. p. 5–59.CrossRefGoogle Scholar
  13. 13.
    Grainger DA. Uterus, human. In: Knobil E, Neill JD, editors. Encyclopedia of reproduction, vol. 4. San Diego, CA: Academic; 1998. p. 942–50.Google Scholar
  14. 14.
    Gao H, Wu G, Spencer TE, Johnson GA, Bazer FW. Select nutrients in the ovine uterine lumen. III. Cationic amino acid transporters in the ovine uterus and peri-implantation conceptuses. Biol Reprod. 2009;80(3):602–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Gao H, Wu G, Spencer TE, Johnson GA, Li X, Bazer FW. Select nutrients in the ovine uterine lumen. I. Amino acids, glucose, and ions in uterine lumenal flushings of cyclic and pregnant ewes. Biol Reprod. 2009;80(1):86–93.CrossRefPubMedGoogle Scholar
  16. 16.
    Hugentobler SA, Diskin MG, Leese HJ, et al. Amino acids in oviduct and uterine fluid and blood plasma during the estrous cycle in the bovine. Mol Reprod Dev. 2007;74(4):445–54.CrossRefPubMedGoogle Scholar
  17. 17.
    Leese HJ, Hugentobler SA, Gray SM, et al. Female reproductive tract fluids: composition, mechanism of formation and potential role in the developmental origins of health and disease. Reprod Fertil Dev. 2007;20(1):1–8.CrossRefGoogle Scholar
  18. 18.
    Casslen BG. Free amino acids in human uterine fluid. Possible role of high taurine concentration. J Reprod Med. 1987;32(3):181–4.PubMedGoogle Scholar
  19. 19.
    Greene J, Feugang J, Pfeiffer K, Stokes J, Bowers S, Ryan P. l-arginine enhances cell proliferation and reduces apoptosis in human endometrial RL95-2 cells. Reprod Biol Endocrinol. 2013;11(1):15.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kim JY, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW. Select nutrients in the ovine uterine lumen. VIII. l-Arginine stimulates proliferation of ovine trophectoderm cells through MTOR-RPS6K-RPS6 signaling cascade and synthesis of nitric oxide and polyamines. Biol Reprod. 2011;84(1):70–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Kim J-Y, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW. Select nutrients in the ovine uterine lumen. VII. Effects of l-arginine, leucine, glutamine, and glucose on trophectoderm cell signaling, proliferation, and migration. Biol Reprod. 2011;84(1):62–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Massmann GA, Zhang J, Figueroa JP. Functional and molecular characterization of nitric oxide synthase in the endometrium and myometrium of pregnant sheep during the last third of gestation. Am J Obstet Gynecol. 1999;181(1):116–25.CrossRefPubMedGoogle Scholar
  23. 23.
    Kwon H, Wu G, Bazer FW, Spencer TE. Developmental changes in polyamine levels and synthesis in the ovine conceptus. Biol Reprod. 2003;69(5):1626–34.CrossRefPubMedGoogle Scholar
  24. 24.
    Kwon H, Wu G, Meininger CJ, Bazer FW, Spencer TE. Developmental changes in nitric oxide synthesis in the ovine placenta. Biol Reprod. 2004;70(3):679–86.CrossRefPubMedGoogle Scholar
  25. 25.
    Wu G, Pond WG, Flynn SP, Ott TL, Bazer FW. Maternal dietary protein deficiency decreases nitric oxide synthase and ornithine decarboxylase activities in placenta and endometrium of pigs during early gestation. J Nutr. 1998;128(12):2395–402.PubMedGoogle Scholar
  26. 26.
    Yu H, Yoo PK, Aguirre CC, et al. Widespread expression of arginase I in mouse tissues: biochemical and physiological implications. J Histochem Cytochem. 2003;51(9):1151–60.CrossRefPubMedGoogle Scholar
  27. 27.
    Zeng X, Wang F, Fan X, et al. Dietary l-arginine supplementation during early pregnancy enhances embryonic survival in rats. J Nutr. 2008;138(8):1421–5.PubMedGoogle Scholar
  28. 28.
    Telfer JF, Irvine GA, Kohnen G, Campbell S, Cameron IT. Expression of endothelial and inducible nitric oxide synthase in non-pregnant and decidualized human endometrium. Mol Hum Reprod. 1997;3(1):69–75.CrossRefPubMedGoogle Scholar
  29. 29.
    Cameron IT, Campbell S. Nitric oxide in the endometrium. Hum Reprod Update. 1998;4(5):565–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Purcell TL, Given R, Chwalisz K, Garfield RE. Nitric oxide synthase distribution during implantation in the mouse. Mol Hum Reprod. 1999;5(5):467–75.CrossRefPubMedGoogle Scholar
  31. 31.
    Gouge RC, Marshburn P, Gordon BE, Nunley W, Huet-Hudson YM. Nitric oxide as a regulator of embryonic development. Biol Reprod. 1998;58(4):875–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Manser RC, Leese HJ, Houghton FD. Effect of inhibiting nitric oxide production on mouse preimplantation embryo development and metabolism. Biol Reprod. 2004;71(2):528–33.CrossRefPubMedGoogle Scholar
  33. 33.
    Zhao Y-C, Chi Y-J, Yu Y-S, et al. Polyamines are essential in embryo implantation: expression and function of polyamine-related genes in mouse uterus during peri-implantation period. Endocrinology. 2008;149(5):2325–32.CrossRefPubMedGoogle Scholar
  34. 34.
    Rodriguez-Sallaberry C, Simmen FA, Simmen RCM. Polyamine- and insulin-like growth factor-i-mediated proliferation of porcine uterine endometrial cells: a potential role for spermidine/spermine N1-acetyltransferase during peri-implantation. Biol Reprod. 2001;65(2):587–94.CrossRefPubMedGoogle Scholar
  35. 35.
    Gao H, Wu G, Spencer TE, Johnson GA, Bazer FW. Select nutrients in the ovine uterine lumen. V. Nitric oxide synthase, GTP cyclohydrolase, and ornithine decarboxylase in ovine uteri and peri-implantation conceptuses. Biol Reprod. 2009;81(1):67–76.CrossRefPubMedGoogle Scholar
  36. 36.
    Stewart MD, Johnson GA, Gray CA, et al. Prolactin receptor and uterine milk protein expression in the ovine endometrium during the estrous cycle and pregnancy. Biol Reprod. 2000;62(6):1779–89.CrossRefPubMedGoogle Scholar
  37. 37.
    Rosenfeld CS. Introduction to comparative placentation. In: Schatten H, Constantinescu GM, editors. Comparative reproductive biology. Ames, IA: Blackwell; 2007. p. 263–70.CrossRefGoogle Scholar
  38. 38.
    Regnault TR, Friedman JE, Wilkening RB, Anthony RV, Hay Jr WW. Fetoplacental transport and utilization of amino acids in IUGR—a review. Placenta. 2005;26(Suppl A):S52–62.CrossRefPubMedGoogle Scholar
  39. 39.
    Grillo M, Lanza A, Colombatto S. Transport of amino acids through the placenta and their role. Amino Acids. 2008;34(4):517–23.CrossRefPubMedGoogle Scholar
  40. 40.
    Teasdale F, Jean-Jacques G. Morphometric evaluation of the microvillous surface enlargement factor in the human placenta from mid-gestation to term. Placenta. 1985;6(5):375–81.CrossRefPubMedGoogle Scholar
  41. 41.
    Myatt L. Placental adaptive responses and fetal programming. J Physiol. 2006;572(1):25–30.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ayuk PT-Y, Sibley CP, Donnai P, D’Souza S, Glazier JD. Development and polarization of cationic amino acid transporters and regulators in the human placenta. Am J Physiol: Cell Physiol. 2000;278(6):C1162–71.Google Scholar
  43. 43.
    Furesz TC, Smith CH. Identification of two leucine-sensitive lysine transport activities in human placental basal membrane. Placenta. 1997;18(8):649–55.CrossRefPubMedGoogle Scholar
  44. 44.
    Ayuk PT-Y, Theophanous D, D’Souza SW, Sibley CP, Glazier JD. l-arginine transport by the microvillous plasma membrane of the syncytiotrophoblast from human placenta in relation to nitric oxide production: effects of gestation, preeclampsia, and intrauterine growth restriction. J Clin Endocrinol Metab. 2002;87(2):747–51.CrossRefPubMedGoogle Scholar
  45. 45.
    Ishikawa T, Harada T, Koi H, Kubota T, Azuma H, Aso T. Identification of arginase in human placental villi. Placenta. 2007;28(2–3):133–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Myatt L, Brockman DE, Eis ALW, Pollock JS. Immunohistochemical localization of nitric oxide synthase in the human placenta. Placenta. 1993;14(5):487–95.CrossRefPubMedGoogle Scholar
  47. 47.
    Swaisgood CM, Zu H-X, Perkins DJ, et al. Coordinate expression of inducible nitric oxide synthase and cyclooxygenase-2 genes in uterine tissues of endotoxin-treated pregnant mice. Am J Obstet Gynecol. 1997;177(5):1253–62.CrossRefPubMedGoogle Scholar
  48. 48.
    Wu G, Bazer FW, Hu J, Johnson GA, Spencer TE. Polyamine synthesis from proline in the developing porcine placenta. Biol Reprod. 2005;72(4):842–50.CrossRefPubMedGoogle Scholar
  49. 49.
    Buhimschi I, Yallampalli C, Dong Y-L, Garfield RE. Involvement of a nitric oxide-cyclic guanosine monophosphate pathway in control of human uterine contractility during pregnancy. Am J Obstet Gynecol. 1995;172(5):1577–84.CrossRefPubMedGoogle Scholar
  50. 50.
    Mayer B, Brunner F, Schmidt K. Inhibition of nitric oxide synthesis by methylene blue. Biochem Pharmacol. 1993;45(2):367–74.CrossRefPubMedGoogle Scholar
  51. 51.
    Jovanović A, Grbović L, Tulić I. l-Arginine induces relaxation of human uterine artery with both intact and denuded endothelium. Eur J Pharmacol. 1994;256(1):103–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Taylor HS, Fei X. Emx2 regulates mammalian reproduction by altering endometrial cell proliferation. Mol Endocrinol. 2005;19(11):2839–46.CrossRefPubMedGoogle Scholar
  53. 53.
    Zhang X, Chen CH, Confino E, Barnes R, Milad M, Kazer RR. Increased endometrial thickness is associated with improved treatment outcome for selected patients undergoing in vitro fertilization-embryo transfer. Fertil Steril. 2005;83(2):336–40.CrossRefPubMedGoogle Scholar
  54. 54.
    Gonen Y, Casper RF. Prediction of implantation by the sonographic appearance of the endometrium during controlled ovarian stimulation for in vitro fertilization (IVF). J In Vitro Fert Embryo Transf. 1990;7(3):146–52.CrossRefPubMedGoogle Scholar
  55. 55.
    Sher G, Herbert C, Maassarani G, Jacobs MH. Assessment of the late proliferative phase endometrium by ultrasonography in patients undergoing in-vitro fertilization and embryo transfer (IVF/ET). Hum Reprod. 1991;6(2):232–7.PubMedGoogle Scholar
  56. 56.
    Martin PM, Sutherland AE. Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev Biol. 2001;240(1):182–93.CrossRefPubMedGoogle Scholar
  57. 57.
    Spencer TE, Johnson GA, Bazer FW, Burghardt RC. Implantation mechanisms: insights from the sheep. Reproduction. 2004;128(6):657–68.CrossRefPubMedGoogle Scholar
  58. 58.
    Kim J, Song G, Wu G, Gao H, Johnson GA, Bazer FW. l-Arginine, leucine, and glutamine stimulate proliferation of porcine trophectoderm cells through the MTOR-RPS6K-RPS6-EIF4EBP1 signal transduction pathway. Biol Reprod. 2013;88(5):113, 111–119.Google Scholar
  59. 59.
    Bazer FW, Spencer TE, Johnson GA, Burghardt RC, Wu G. Comparative aspects of implantation. Reproduction. 2009;138(2):195–209.CrossRefPubMedGoogle Scholar
  60. 60.
    Wang X, Burghardt RC, Romero JJ, Hansen TR, Wu G, Bazer FW. Functional roles of l-arginine during the peri-implantation period of pregnancy. III. l-Arginine stimulates proliferation and interferon tau production by ovine trophectoderm cells via nitric oxide and polyamine-TSC2-MTOR signaling pathways. Biol Reprod. 2015;92(3):75, 71–17.Google Scholar
  61. 61.
    Reynolds LP, Redmer DA. Angiogenesis in the placenta. Biol Reprod. 2001;64(4):1033–40.CrossRefPubMedGoogle Scholar
  62. 62.
    Zheng J, Wen Y, Austin JL, Chen D-b. Exogenous nitric oxide stimulates cell proliferation via activation of a mitogen-activated protein kinase pathway in ovine fetoplacental artery endothelial cells. Biol Reprod. 2006;74(2):375–82.CrossRefPubMedGoogle Scholar
  63. 63.
    Frank JW, Escobar J, Nguyen HV, et al. Oral N-carbamylglutamate supplementation increases protein synthesis in skeletal muscle of piglets. J Nutr. 2007;137(2):315–9.PubMedGoogle Scholar
  64. 64.
    Liu XD, Wu X, Yin YL, et al. Effects of dietary l-arginine or N-carbamylglutamate supplementation during late gestation of sows on the miR-15b/16, miR-221/222, VEGFA and eNOS expression in umbilical vein. Amino Acids. 2012;42(6):2111–9.CrossRefPubMedGoogle Scholar
  65. 65.
    Lefevre PL, Palin MF, Murphy BD. Polyamines on the reproductive landscape. Endocr Rev. 2011;32(5):694–712.CrossRefPubMedGoogle Scholar
  66. 66.
    Bazer FW, Kim J, Ka H, Johnson GA, Wu G, Song G. Select nutrients in the uterine lumen of sheep and pigs affect conceptus development. J Reprod Dev. 2012;58(2):180–8.CrossRefPubMedGoogle Scholar
  67. 67.
    Wu G, Bazer FW, Satterfield MC, et al. Impacts of l-arginine nutrition on embryonic and fetal development in mammals. Amino Acids. 2013;45(2):241–56.CrossRefPubMedGoogle Scholar
  68. 68.
    Wu G, Bazer FW, Davis TA, et al. l-Arginine metabolism and nutrition in growth, health and disease. Amino Acids. 2009;37(1):153–68.CrossRefPubMedGoogle Scholar
  69. 69.
    Krause BJ, Hanson MA, Casanello P. Role of nitric oxide in placental vascular development and function. Placenta. 2011;32(11):797–805.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Mateo RD, Wu G, Bazer FW, Park JC, Shinzato I, Kim SW. Dietary l-arginine supplementation enhances the reproductive performance of gilts. J Nutr. 2007;137(3):652–6.PubMedGoogle Scholar
  71. 71.
    Wu G, Bazer FW, Burghardt RC, et al. Impacts of amino acid nutrition on pregnancy outcomes in pigs: mechanisms and implications for swine production. J Anim Sci. 2010;88 Suppl 13:E195–204.CrossRefPubMedGoogle Scholar
  72. 72.
    Gao K, Jiang Z, Lin Y, et al. Dietary l-arginine supplementation enhances placental growth and reproductive performance in sows. Amino Acids. 2012;42(6):2207–14.CrossRefPubMedGoogle Scholar
  73. 73.
    de Boo HA, van Zijl PL, Smith DE, Kulik W, Lafeber HN, Harding JE. l-Arginine and mixed amino acids increase protein accretion in the growth-restricted and normal ovine fetus by different mechanisms. Pediatr Res. 2005;58(2):270–7.CrossRefPubMedGoogle Scholar
  74. 74.
    Zhou W, Gosch G, Guerra T, et al. Amino acid profiles in first trimester amniotic fluids of healthy bovine cloned pregnancies are similar to those of IVF pregnancies, but not nonviable cloned pregnancies. Theriogenology. 2014;81(2):225–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Zeng X, Mao X, Huang Z, Wang F, Wu G, Qiao S. l-Arginine enhances embryo implantation in rats through PI3K/PKB/mTOR/NO signaling pathway during early pregnancy. Reproduction. 2013;145(1):1–7.CrossRefPubMedGoogle Scholar
  76. 76.
    Vosatka RJ, Hassoun PM, Harvey-Wilkes KB. Dietary l-arginine prevents fetal growth restriction in rats. Am J Obstet Gynecol. 1998;178(2):242–6.CrossRefPubMedGoogle Scholar
  77. 77.
    Gui S, Jia J, Niu X, et al. l-Arginine supplementation for improving maternal and neonatal outcomes in hypertensive disorder of pregnancy: a systematic review. J Renin Angiotensin Aldosterone Syst. 2014;15(1):88–96.CrossRefPubMedGoogle Scholar
  78. 78.
    Zhu Q, Yue X, Tian QY, et al. Effect of l-arginine supplementation on blood pressure in pregnant women: a meta-analysis of placebo-controlled trials. Hypertens Pregnancy. 2013;32(1):32–41.CrossRefPubMedGoogle Scholar
  79. 79.
    Wu X, Yin YL, Liu YQ, et al. Effect of dietary l-arginine and N-carbamylglutamate supplementation on reproduction and gene expression of eNOS, VEGFA and PlGF1 in placenta in late pregnancy of sows. Anim Reprod Sci. 2012;132(3–4):187–92.CrossRefPubMedGoogle Scholar
  80. 80.
    Groebner AE, Zakhartchenko V, Bauersachs S, et al. Reduced amino acids in the bovine uterine lumen of cloned versus in vitro fertilized pregnancies prior to implantation. Cell Reprogram. 2011;13(5):403–10.PubMedGoogle Scholar
  81. 81.
    Greene JM, Dunaway CW, Bowers SD, Rude BJ, Feugang JM, Ryan PL. Dietary l-arginine supplementation during gestation in mice enhances reproductive performance and Vegfr2 transcription activity in the fetoplacental unit. J Nutr. 2012;142(3):456–60.CrossRefPubMedGoogle Scholar
  82. 82.
    Wang X, Johnson GA, Burghardt RC, Wu G, Bazer FW. Uterine histotroph and conceptus development. I. cooperative effects of l-arginine and secreted phosphoprotein 1 on proliferation of ovine trophectoderm cells via activation of the PDK1-Akt/PKB-TSC2-MTORC1 signaling cascade. Biol Reprod. 2015;92(2):51.CrossRefPubMedGoogle Scholar
  83. 83.
    Abe H, Ishikawa W, Kushima T, et al. Nitric oxide induces vascular endothelial growth factor expression in the rat placenta in vivo and in vitro. Biosci Biotechnol Biochem. 2013;77(5):971–6.CrossRefPubMedGoogle Scholar
  84. 84.
    Altun ZS, Uysal S, Guner G, Yilmaz O, Posaci C. Effects of oral l-arginine supplementation on blood pressure and asymmetric dimethylarginine in stress-induced preeclamptic rats. Cell Biochem Funct. 2008;26(5):648–53.CrossRefPubMedGoogle Scholar
  85. 85.
    Dorniak-Wall T, Grivell RM, Dekker GA, Hague W, Dodd JM. The role of l-arginine in the prevention and treatment of pre-eclampsia: a systematic review of randomised trials. J Hum Hypertens. 2014;28(4):230–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Pathobiology and Population Medicine, Department of Animal and Dairy SciencesMississippi State UniversityMississippi StateUSA
  2. 2.Department of Pathobiology and Population Medicine, Department of Animal and Dairy SciencesMississippi State UniversityMississippi StateUSA

Personalised recommendations