Context Recognition: Towards Automatic Query Generation

  • Marjan AlirezaieEmail author
  • Federico Pecora
  • Amy Loutfi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9425)


In this paper, we present an ontology-based approach in designing knowledge model for context recognition (CR) systems. The main focus in this paper is on the use of an ontology to facilitate the generation of user-based queries to the CR system. By leveraging from the ontology, users need not know about sensor details and the structure of the ontology in expressing queries related to events of interest. To validate the approach and demonstrate the flexibility of the ontology for query generation, the ontology has been integrated in two separate application domains. The first domain considers a health care system implemented for the GiraffPlus project where the query generation process is automated to request information about activities of daily living. The second application uses the same ontology for an air quality monitoring application in the home. Since these two systems are independently developed for different purposes, the ease of applying the ontology upon them can be considered as a credit for its generality.


Query generation Context recognition OWL-DL ontology 



This work and the authors are supported by the distributed environment Ecare@Home funded by the Swedish Knowledge Foundation 2015–2019.


  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRefzbMATHGoogle Scholar
  2. 2.
    Saguna, S., Zaslavsky, A., Chakraborty, D.: Complex activity recognition using context-driven activity theory and activity signatures. ACM Trans. Comput. Hum. Interact. 20(6), 32:1–32:34 (2013)CrossRefGoogle Scholar
  3. 3.
    Coradeschi, S., Cesta, A., Cortellessa, G., Coraci, L., González-Jiménez, J., Karlsson, L., Furfari, F., Loutfi, A., Orlandini, A., Palumbo, F., Pecora, F., Rump, S.V., Stimec, A., Ulberg, J., Otslund, B.: Giraffplus: combining social interaction and long term monitoring for promoting independent living. In: 6th International Conference on Human System Interactions (HSI), pp. 578–585 (2013)Google Scholar
  4. 4.
    Pecora, F., Cirillo, M., DellOsa, F., Ullberg, J., Saffiotti, A.: A constraint-based approach for proactive, context-aware human support. J. Ambient Intell. Smart Environ. 4(4), 347–367 (2012)Google Scholar
  5. 5.
    Chen, L., Nugent, C.D.: Ontology-based activity recognition in intelligent pervasive environments. Int. J. Web Inf. Syst. 5(4), 410–430 (2009)CrossRefGoogle Scholar
  6. 6.
    Chen, L., Nugent, C.D.: Is ontology-based activity recognition really effective? In: Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 427–431. IEEE (2011)Google Scholar
  7. 7.
    Compton, M., Barnaghi, P., Bermudez, L., Garca-Castro, L., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K., Kelsey, D., Le Phuoc, D., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., Passant, A., Sheth, A., Taylor, K.: The SSN ontology of the W3C semantic sensor network incubator group. J. Web Semant. Sci. Serv. Agents World Wide Web 17, 25–32 (2012)CrossRefGoogle Scholar
  8. 8.
    Horrocks, I., Patel-Schneider, P.F., McGuinness, D.L., Welty, C.A.: OWL: a description logic based ontology language for the semantic web. In: Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.) The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)Google Scholar
  9. 9.
    Wongpatikaseree, K., Ikeda, M., Buranarach, M., Supnithi, T., Lim, A.O., Tan, Y.: Activity recognition using context-aware infrastructure ontology in smart home domain. In: International Conference on Knowledge, Information and Creativity Support Systems (KICSS), pp. 50–57. IEEE (2012)Google Scholar
  10. 10.
    Attard, J., Scerri, S., Rivera, I., Handschuh, S.: Ontology-based situation recognition for context-aware systems. In: International Conference on Semantic Systems, pp. 113–120 (2013)Google Scholar
  11. 11.
    Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Recommendation (2008)Google Scholar
  12. 12.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 190–205. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  13. 13.
    Lifschitz, V.: What is answer set programming?. In: International Conference on Artificial Intelligence (AAAI), pp.1594–1597 (2008)Google Scholar
  14. 14.
    Shearer, R., Motik, B., Horrocks, I.: HermiT: a highly-efficient OWL reasoner. In: International Workshop on OWL: Experiences and Directions (OWLED EU), vol. 432, pp. 91–101 (2008)Google Scholar
  15. 15.
    Horridge, M., Drummond, N., Goodwin, J., Rector, A., Wang, H.: The manchester OWL syntax. Experiences and Directions (OWLED EU). In: International Workshop on OWL (2006)Google Scholar
  16. 16.
    Baader, F., Horrocks, I., Sattler, U.: Description logics as ontology languages for the semantic web. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 228–248. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  17. 17.
    Pearce, T.C., Schiffman, S.S., Nagle, H.T., Gardner, J.W.: Handbook of Machine Olfaction: Electronic Nose Technology. Wiley-VCH, Hoboken (2003)Google Scholar
  18. 18.
    Alirezaie, M., Loutfi, A.: Reasoning for sensor data interpretation: an application to air quality monitoring. J. Ambient Intell. Smart Environ. (JAISE) 7, 579–597 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Applied Autonomous Sensor Systems, Department of TechnologyÖrebro UniversityÖrebroSweden

Personalised recommendations