Role of Lipid Metabolism in Plant Pollen Exine Development

Part of the Subcellular Biochemistry book series (SCBI, volume 86)

Abstract

Pollen plays important roles in the life cycle of angiosperms plants. It acts as not only a biological protector of male sperms but also a communicator between the male and the female reproductive organs, facilitating pollination and fertilization. Pollen is produced within the anther, and covered by the specialized outer envelope, pollen wall. Although the morphology of pollen varies among different plant species, the pollen wall is mainly comprised of three layers: the pollen coat, the outer exine layer, and the inner intine layer. Except the intine layer, the other two layers are basically of lipidic nature. Particularly, the outer pollen wall layer, the exine, is a highly resistant biopolymer of phenylpropanoid and lipidic monomers covalently coupled by ether and ester linkages. The precise molecular mechanisms underlying pollen coat formation and exine patterning remain largely elusive. Herein, we summarize the current genetic, phenotypic and biochemical studies regarding to the pollen exine development and underlying molecular regulatory mechanisms mainly obtained from monocot rice (Oryza sativa) and dicot Arabidopsis thaliana, aiming to extend our understandings of plant male reproductive biology. Genes, enzymes/proteins and regulatory factors that appear to play conserved and diversified roles in lipid biosynthesis, transportation and modification during pollen exine formation, were highlighted.

Keywords

ABC transporter Exine Lipid transport protein Sporopollenin Tapetum 

References

  1. Aarts M, Hodge R, Kalantidis K et al (1997) The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J 12(3):615–623PubMedCrossRefGoogle Scholar
  2. Ahlers F, Bubert H, Steuernagel S et al (2000) The nature of oxygen in sporopollenin from the pollen of Typha angustifolia L. Z Naturforsch C 55(3–4):129–136PubMedGoogle Scholar
  3. Ariizumi T, Toriyama K (2007) Pollen exine pattern formation is dependent on three major developmental processes in Arabidopsis thaliana. Int J Plant Dev Biol 1:106–115Google Scholar
  4. Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Annu Rev Plant Biol 62:437–460PubMedCrossRefGoogle Scholar
  5. Ariizumi T, Hatakeyama K, Hinata K et al (2003) A novel male-sterile mutant of Arabidopsis thaliana, faceless pollen-1, produces pollen with a smooth surface and an acetolysis-sensitive exine. Plant Mol Biol 53(1–2):107–116PubMedCrossRefGoogle Scholar
  6. Ariizumi T, Hatakeyama K, Hinata K et al (2004) Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. Plant J 39(2):170–181PubMedCrossRefGoogle Scholar
  7. Aya K, Ueguchi-Tanaka M, Kondo M et al (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21(5):1453–1472PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bedinger P (1992) The remarkable biology of pollen. Plant Cell 4(8):879–887PubMedPubMedCentralCrossRefGoogle Scholar
  9. Beerling D (2007) The emerald planet: how plants changed earth’s history. Oxford University Press, New YorkGoogle Scholar
  10. Blackmore S, Wortley A, Skvarla J et al (2007) Pollen wall development in flowering plants. New Phytol 174(3):483–498. doi: 10.1111/j.1469-8137.2007.02060.x PubMedCrossRefGoogle Scholar
  11. Bourdenx B, Bernard A, Domergue F et al (2011) Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol 156(1):29–45PubMedPubMedCentralCrossRefGoogle Scholar
  12. Brown AP, Affleck V, Fawcett T et al (2006) Tandem affinity purification tagging of fatty acid biosynthetic enzymes in Synechocystis sp. PCC6803 and Arabidopsis thaliana. J Exp Bot 57(7):1563–1571PubMedCrossRefGoogle Scholar
  13. Bubert H, Lambert J, Steuernagel S et al (2002) Continuous decomposition of sporopollenin from pollen of Typha angustifolia L. by acidic methanolysis. Z Naturforsch C 57(11–12):1035–1041PubMedGoogle Scholar
  14. Chang HS, Zhang C, Chang YH et al (2012) No primexine and plasma membrane undulation is essential for primexine deposition and plasma membrane undulation during microsporogenesis in Arabidopsis. Plant Physiol 158(1):264–272PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chen C, Chen G, Hao X et al (2011a) CaMF2, an anther-specific lipid transfer protein (LTP) gene, affects pollen development in Capsicum annuum L. Plant Sci 181(4):439–448PubMedCrossRefGoogle Scholar
  16. Chen W, Yu XH, Zhang K et al (2011b) Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. Plant Physiol 157(2):842–853PubMedPubMedCentralCrossRefGoogle Scholar
  17. Choi H, Jin JY, Choi S et al (2011) An ABCG/WBC‐type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen. Plant J 65(2):181–193PubMedCrossRefGoogle Scholar
  18. Choi H, Ohyama K, Kim Y-Y et al (2014) The role of Arabidopsis ABCG9 and ABCG31 ATP binding cassette transporters in pollen fitness and the deposition of steryl glycosides on the pollen coat. Plant Cell 26(1):310–324PubMedPubMedCentralCrossRefGoogle Scholar
  19. Colpitts CC, Kim SS, Posehn SE et al (2011) PpASCL, a moss ortholog of anther‐specific chalcone synthase‐like enzymes, is a hydroxyalkylpyrone synthase involved in an evolutionarily conserved sporopollenin biosynthesis pathway. New Phytol 192(4):855–868PubMedCrossRefGoogle Scholar
  20. Cronk Q, Cronk Q (2009) The molecular organography of plants. Oxford University Press, OxfordCrossRefGoogle Scholar
  21. de Azevedo Souza C, Kim SS, Koch S et al (2009) A novel fatty Acyl-CoA synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. Plant Cell 21(2):507–525PubMedPubMedCentralCrossRefGoogle Scholar
  22. Dobritsa AA, Shrestha J, Morant M et al (2009) CYP704B1 is a long-chain fatty acid omega-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol 151(2):574–589PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dobritsa A, Lei Z, Nishikawa S et al (2010) LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. Plant Physiol 153(3):937–955PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dong X, Hong Z, Sivaramakrishnan M et al (2005) Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant J 42(3):315–328PubMedCrossRefGoogle Scholar
  25. Dou XY, Yang KZ, Zhang Y et al (2011) WBC27, an adenosine tri‐phosphate‐binding cassette protein, controls pollen wall formation and patterning in Arabidopsis. J Integr Plant Biol 53(1):74–88PubMedCrossRefGoogle Scholar
  26. Edlund AF, Swanson R, Preuss D (2004) Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16(Suppl):S84–S97PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fu Z, Yu J, Cheng X et al (2014) The rice basic helix-loop-helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. Plant Cell 26(4):1512–1524PubMedPubMedCentralCrossRefGoogle Scholar
  28. Gabarayeva NI, Grigorjeva VV (2004) Exine development in Encephalartos altensteinii (Cycadaceae): ultrastructure, substructure and the modes of sporopollenin accumulation. Rev Palaeobot Palynol 132(3–4):175–193CrossRefGoogle Scholar
  29. Gabarayeva N, Grigorjeva V, Rowley JR et al (2009) Sporoderm development in Trevesia burckii (Araliaceae). I. Tetrad period: further evidence for the participation of self-assembly processes. Rev Palaeobot Palynol 156(1–2):211–232CrossRefGoogle Scholar
  30. Grienenberger E, Kim SS, Lallemand B et al (2010) Analysis of TETRAKETIDE alpha-PYRONE REDUCTASE function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. Plant Cell 22(12):4067–4083PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gu J, Zhu J, Yu Y et al (2014) DYT1 directly regulates the expression of TDF1 for tapetum development and pollen wall formation in Arabidopsis. Plant J 80(6):1005–1013PubMedCrossRefGoogle Scholar
  32. Guan Y, Huang X, Zhu J et al (2008) RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol 147(2):852–863PubMedPubMedCentralCrossRefGoogle Scholar
  33. Gunning B, Steer M (1996) Plant cell biology: structure and function. Jones & Bartlett Learning, BurlingtonGoogle Scholar
  34. Haerizadeh F, Wong C, Bhalla P et al (2009) Genomic expression profiling of mature soybean (Glycine max) pollen. BMC Plant Biol 9:25PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hafidh S, Breznenová K, Růžička P et al (2012) Comprehensive analysis of tobacco pollen transcriptome unveils common pathways in polar cell expansion and underlying heterochronic shift during spermatogenesis. BMC Plant Biol 12(1):24PubMedPubMedCentralCrossRefGoogle Scholar
  36. Heslop-Harrison J (1979) Pollen wall as adaptive systems. Ann Mo Bot Gard 66(4):813–829CrossRefGoogle Scholar
  37. Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132(2):640–652PubMedPubMedCentralCrossRefGoogle Scholar
  38. Honys D, Twell D (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol 5(11):R85PubMedPubMedCentralCrossRefGoogle Scholar
  39. Hu L, Tan H, Liang W et al (2010) The Post-meiotic Deficient Anther1 (PDA1) gene is required for post-meiotic anther development in rice. J Genet Genomics 37(1):37–46PubMedCrossRefGoogle Scholar
  40. Huang M, Chen T, Huang A (2013a) Abundant type III lipid transfer proteins in Arabidopsis tapetum are secreted to the locule and become a constituent of the pollen exine. Plant Physiol 163:1218–1229PubMedPubMedCentralCrossRefGoogle Scholar
  41. Huang X, Niu J, Sun M et al (2013b) CYCLIN-DEPENDENT KINASE G1 is associated with the spliceosome to regulate CALLOSE SYNTHASE5 splicing and pollen wall formation in Arabidopsis. Plant Cell 25(2):637–648PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ito T, Shinozaki K (2002) The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant Cell Physiol 43(11):1285–1292PubMedCrossRefGoogle Scholar
  43. Ito T, Nagata N, Yoshiba Y et al (2007) Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell 19(11):3549–3562PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jeong H, Kang J, Zhao M et al (2014) Tomato Male sterile 1035 is essential for pollen development and meiosis in anthers. J Exp Bot 65(22):6693–6709, eru389PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jessen D, Olbrich A, Knüfer J et al (2011) Combined activity of LACS1 and LACS4 is required for proper pollen coat formation in Arabidopsis. Plant J 68(4):715–726PubMedCrossRefGoogle Scholar
  46. Ji C, Li H, Chen L et al (2013) A novel rice bHLH transcription factor, DTD, acts coordinately with TDR in controlling tapetum function and pollen development. Mol Plant 6(5):1715–1718PubMedCrossRefGoogle Scholar
  47. Johnston M, Luethy M, Miernyk J et al (1997) Cloning and molecular analyses of the Arabidopsis thaliana plastid pyruvate dehydrogenase subunits. Biochim Biophys Acta 1321(3):200–206PubMedCrossRefGoogle Scholar
  48. Jung K, Han M, Lee Y et al (2005) Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell 17(10):2705–2722PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jung K, Han M, Lee Y et al (2006) Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development. Plant Cell 18(11):3015–3032PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kader J (1996) Lipid-transfer proteins in plants. Ann Rev Plant Biol 47(1):627–654CrossRefGoogle Scholar
  51. Kaneko M, Inukai Y, Ueguchi-Tanaka M et al (2004) Loss-of-function mutations of the rice GAMYB gene impair α-amylase expression in aleurone and flower development. Plant Cell 16(1):33–44PubMedPubMedCentralCrossRefGoogle Scholar
  52. Kang J, Park J, Choi H, et al (2011) Plant ABC transporters. The Arabidopsis Book. No. 9. Am Soc Plant Biol. doi: 10.1199/tab.0153
  53. Kapoor S, Kobayashi A, Takatsuji H (2002) Silencing of the tapetum specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in Petunia. Plant Cell 14:2353–2367PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kelliher T, Walbot V (2011) Emergence and patterning of the five cell types of the Zea mays anther locule. Dev Biol 350(1):32–49PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kenrick P, Crane P (1997) The origin and early diversification of land plants. A cladistic study. Smithsonian Institute Press, Washington, DCGoogle Scholar
  56. Kim SS, Douglas CJ (2013) Sporopollenin monomer biosynthesis in Arabidopsis. J Plant Biol 56(1):1–6CrossRefGoogle Scholar
  57. Kim S, Grienenberger E, Lallemand B et al (2010) LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B encode hydroxyalkyl alpha-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana. Plant Cell 22(12):4045–4066PubMedPubMedCentralCrossRefGoogle Scholar
  58. Knox R, Heslop-Harrison J (1971) Pollen-wall proteins: the fate of intine-held antigens on the stigma in compatible and incompatible pollinations of Phalaris tuberosa L. J Cell Sci 9(1):239–251PubMedGoogle Scholar
  59. Ko S, Li M, Ku M et al (2014) The bHLH142 transcription factor coordinates with TDR1 to modulate the expression of EAT1 and regulate pollen development in rice. Plant Cell 26(6):2486–2504PubMedPubMedCentralCrossRefGoogle Scholar
  60. Konishi T, Shinohara K, Yamada K et al (1996) Acetyl-CoA carboxylase in higher plants: most plants other than gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant Cell Physiol 37(2):117–122PubMedCrossRefGoogle Scholar
  61. Kunst L, Samuels A (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42(1):51–80PubMedCrossRefGoogle Scholar
  62. Kuromori T, Miyaji T, Yabuuchi H et al (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. PNAS 107(5):2361–2366PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lallemand B, Erhardt M, Heitz T et al (2013) Sporopollenin biosynthetic enzymes interact and constitute a metabolon localized to the endoplasmic reticulum of tapetum cells. Plant Physiol 162(2):616–625PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lang V, Usadel B, Obermeyer G (2015) De novo sequencing and analysis of the lily pollen transcriptome: an open access data source for an orphan plant species. Plant Mol Biol 87(1–2):69–80PubMedCrossRefGoogle Scholar
  65. Lee S, Jung KH, An G et al (2004) Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene trap system. Plant Mol Biol l54:755–765CrossRefGoogle Scholar
  66. Li H, Zhang D (2010) Biosynthesis of anther cuticle and pollen exine in rice. Plant Signal Behav 5(9):1121–1123PubMedPubMedCentralCrossRefGoogle Scholar
  67. Li N, Zhang D, Liu H et al (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18(11):2999–3014PubMedPubMedCentralCrossRefGoogle Scholar
  68. Li H, Pinot F, Sauveplane V et al (2010) CYP704B2 catalyzing the ω-hydroxylation of fatty acids is required for anther cutin biosynthesis and pollen exine formation in rice. Plant Cell 22:173–190PubMedPubMedCentralCrossRefGoogle Scholar
  69. Li H, Yuan Z, Vizcay-Barrena G et al (2011) PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol 156(2):615–630PubMedPubMedCentralCrossRefGoogle Scholar
  70. Li L, Li Y, Song S et al (2015) An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development. Planta 241(1):157–166PubMedCrossRefGoogle Scholar
  71. Liang M, Zhang P, Shu X et al (2013) Characterization of pollen by MALDI-TOF lipid profiling. Int J Mass Spectrom 334:13–18CrossRefGoogle Scholar
  72. Li-Beisson Y, Shorrosh B, Beisson F et al (2010) Acyl-lipid metabolism. Arabidopsis Book Am Soc Plant Biologist 8:e0133CrossRefGoogle Scholar
  73. Li-Beisson Y, Shorrosh B, Beisson F et al (2013) Acyl-lipid metabolism. The Arabidopsis Book, No.11. Am Soc Plant Biol. doi: 10.1199/tab.0133
  74. Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu. Rev. Plant Biol 56:393–434CrossRefGoogle Scholar
  75. Menand B, Yi K, Jouannic S et al (2007) An ancient mechanism controls the development of cells with a rooting function in land plants. Science 316(5830):1477–1480PubMedCrossRefGoogle Scholar
  76. Morant M, Jorgensen K, Schaller H et al (2007) CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell 19(5):1473–1487PubMedPubMedCentralCrossRefGoogle Scholar
  77. Murgia M, Charzynska M, Rougier M et al (1991) Secretory tapetum of Brassica oleracea L.: polarity and ultrastructural features. Sex. Plant Reprod 4:28–35Google Scholar
  78. Murphy D (2006) The extracellular pollen coat in members of the Brassicaceae: composition, biosynthesis, and functions in pollination. Protoplasma 228(1–3):31–39PubMedCrossRefGoogle Scholar
  79. Niu B, He R, He M et al (2013a) The ATP-binding cassette transporter OsABCG15 is required for anther development and pollen fertility in rice. J Integr Plant Biol 55:710–720PubMedCrossRefGoogle Scholar
  80. Niu N, Liang W, Yang X et al (2013b) EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun 4:1445PubMedCrossRefGoogle Scholar
  81. Ohlrogge J, Kuhn D, Stumpf P (1979) Subcellular localization of acyl carrier protein in leaf protoplasts of Spinacia oleracea. PNAS 76(3):1194–1198PubMedPubMedCentralCrossRefGoogle Scholar
  82. Owen H, Makaroff C (1995) Ultrastructure of microsporogenesis and microgametogenesis in Arabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma 185(1–2):7–21CrossRefGoogle Scholar
  83. Pacini E, Hesse M (1984) The tapetum: its form, function, and possible phylogeny in Embryophyta. Plant Syst Evol 149(3–4):155–185Google Scholar
  84. Paxson-Sowders D, Owen H, Makaroff C (1997) A comparative ultrastructural analysis of exine pattern development in wild-type Arabidopsis and a mutant defective in pattern formation. Protoplasma 198(1–2):53–65CrossRefGoogle Scholar
  85. Paxson-Sowders D, Dodrill C, Owen H et al (2001) DEX1, a novel plant protein, is required for exine pattern formation during pollen development in Arabidopsis. Plant Physiol 127(4):1739–1749PubMedPubMedCentralCrossRefGoogle Scholar
  86. Phan H, Iacuone S, Li S et al (2011) The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell 23(6):2209–2224PubMedPubMedCentralCrossRefGoogle Scholar
  87. Pidkowich M, Nguyen H, Heilmann I et al (2007) Modulating seed β-ketoacyl-acyl carrier protein synthase II level converts the composition of a temperate seed oil to that of a palm-like tropical oil. PNAS 104(11):4742–4747PubMedPubMedCentralCrossRefGoogle Scholar
  88. Piffanelli P, Ross J, Murphy D (1998) Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod 11(2):65–80CrossRefGoogle Scholar
  89. Poethig RS (1987) Clonal analysis of cell lineage patterns in plant development. Am J Bot 74(4):581–594CrossRefGoogle Scholar
  90. Qin P, Tu B, Wang Y et al (2013) ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. Plant Cell Physiol 54(1):138–154PubMedCrossRefGoogle Scholar
  91. Quatrano R, McDaniel S, Khandelwal A et al (2007) Physcomitrella patens: mosses enter the genomic age. Curr Opin Plant Biol 10(2):182–189PubMedCrossRefGoogle Scholar
  92. Quilichini T, Friedmann M, Samuels A et al (2010) ATP-binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis. Plant Physiol 154(2):678–690PubMedPubMedCentralCrossRefGoogle Scholar
  93. Quilichini T, Grienenberger E, Douglas CJ (2014) The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry. doi: 10.1016/j.phytochem.2014.05.002 PubMedGoogle Scholar
  94. Rensing S, Lang D, Zimmer A et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319(5859):64–69PubMedCrossRefGoogle Scholar
  95. Scott R (1994) Pollen exine-the sporopollenin enigma and the physics of pattern. In: Seminar series-society for experimental biology. Cambridge University Press, pp 49–49Google Scholar
  96. Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16(Suppl):S46–S60PubMedPubMedCentralCrossRefGoogle Scholar
  97. Shaw G (1970) Chemistry of sporopollenin. In: Symposium on sporopolleninGoogle Scholar
  98. Shi J, Tan H, Yu XH et al (2011) Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. Plant Cell 23(6):2225–2246PubMedPubMedCentralCrossRefGoogle Scholar
  99. Shivanna K, Cresti M, Ciampolini F et al (1997) Pollen development and pollen-pistil interaction. In: Shivann KR, Sawhney VK (eds) Pollen biotechnology for crop production and improvement. Cambridge University Press, Cambridge, pp 15–39CrossRefGoogle Scholar
  100. Song J, Cao J, Wang C (2013) BcMF11, a novel non-coding RNA gene from Brassica campestris, is required for pollen development and male fertility. Plant Cell Rep 32(1):21–30PubMedCrossRefGoogle Scholar
  101. Sorensen A, Krober S, Unte U et al (2003) The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J Cell Mol Biol 33(2):413–423CrossRefGoogle Scholar
  102. Sun M, Huang X, Yang J et al (2013) Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage. Plant Reprod 26(2):83–91PubMedCrossRefGoogle Scholar
  103. Tang L, Chu H, Yip W et al (2009) An anther‐specific dihydroflavonol 4‐reductase‐like gene (DRL1) is essential for male fertility in Arabidopsis. New Phytol 181(3):576–587PubMedCrossRefGoogle Scholar
  104. Varnier A, Mazeyrat-Gourbeyre F, Sangwan R et al (2005) Programmed cell death progressively models the development of anther sporophytic tissues from the tapetum and is triggered in pollen grains during maturation. J Struct Biol 152(2):118–128PubMedCrossRefGoogle Scholar
  105. Verma DP, Hong Z (2001) Plant callose synthase complexes. Plant Mol Biol 47(6):693–701PubMedCrossRefGoogle Scholar
  106. Wall D (1962) Evidence from recent plankton regarding the biological affinities of Tasmanites Newton 1875 and Leiosphaeridia Eisenack 1958. Geol Mag 99(04):353–362CrossRefGoogle Scholar
  107. Wallace S, Fleming A, Wellman CH et al (2011) Evolutionary development of the plant and spore wall. AoB Plants plr027. doi: 10.1093/aobpla/plr027
  108. Wallace S, Chater C, Kamisugi Y et al (2015) Conservation of Male Sterility 2 function during spore and pollen wall development supports an evolutionarily early recruitment of a core component in the sporopollenin biosynthetic pathway. New Phytol 205(1):390–401PubMedCrossRefGoogle Scholar
  109. Wei L, Xu W, Deng Z et al (2010) Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genomics 11(1):338PubMedPubMedCentralCrossRefGoogle Scholar
  110. Wellman C (2004) Origin, function and development of the spore wall in early land plants. In: Hemsley AR, Poole I (eds) The evolution of plant physiology. Elsevier Academic Press, pp 43–64Google Scholar
  111. Wilmesmeier S, Wiermann R (1995) Influence of EPTC (S-Ethyl-Dipropyl-Thiocarbamate) on the composition of surface waxes and sporopollenin structure in Zea mays. J Plant Physiol 146(1):22–28CrossRefGoogle Scholar
  112. Wilson Z, Zhang D (2009) From Arabidopsis to rice: pathways in pollen development. J Exp Bot 60(5):1479–1492PubMedCrossRefGoogle Scholar
  113. Wilson Z, Morroll S, Dawson J et al (2001) The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J Cell Mol Biol 28(1):27–39CrossRefGoogle Scholar
  114. Worrall D, Hird DL, Hodge R et al (1992) Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4(7):759–771PubMedPubMedCentralCrossRefGoogle Scholar
  115. Wu L, Guan Y, Wu Z et al (2014) OsABCG15 encodes a membrane protein that plays an important role in anther cuticle and pollen exine formation in rice. Plant Cell Rep 33:1881–1899PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wu X, Cai G, Gong F et al (2015) Proteome profiling of maize pollen coats reveals novel protein components. Plant Mol Biol Rep 33:975–986CrossRefGoogle Scholar
  117. Xu J, Yang C, Yuan Z et al (2010) The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell 22(1):91–107PubMedPubMedCentralCrossRefGoogle Scholar
  118. Xu J, Ding Z, Vizcay-Barrena G et al (2014a) ABORTED MICROSPORES acts as a master regulator of pollen wall formation in Arabidopsis. Plant Cell 26(4):1544–1556PubMedPubMedCentralCrossRefGoogle Scholar
  119. Xu Y, Iacuone S, Li S et al (2014b) MYB80 homologues in Arabidopsis, cotton and Brassica: regulation and functional conservation in tapetal and pollen development. BMC Plant Biol 14(1):278PubMedPubMedCentralCrossRefGoogle Scholar
  120. Yadav V, Molina I, Ranathunge K et al (2014) ABCG transporters are required for suberin and pollen wall extracellular barriers in Arabidopsis. Plant Cell 26:3569–3588PubMedPubMedCentralCrossRefGoogle Scholar
  121. Yang C, Vizcay-Barrena G, Conner K et al (2007) MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19(11):3530–3548PubMedPubMedCentralCrossRefGoogle Scholar
  122. Yang J, Tian L, Sun MX et al (2013) AUXIN RESPONSE FACTOR17 is essential for pollen wall pattern formation in Arabidopsis. Plant Physiol 162(2):720–731PubMedPubMedCentralCrossRefGoogle Scholar
  123. Yang X, Wu D, Shi J et al (2014a) Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. J Integr Plant Biol 56(10):979–994PubMedCrossRefGoogle Scholar
  124. Yang Y, Dong C, Yu J et al (2014b) Cysteine Protease 51 (CP51), an anther-specific cysteine protease gene, is essential for pollen exine formation in Arabidopsis. Plant Cell Tissue Organ Cult 119(2):383–397CrossRefGoogle Scholar
  125. Yeats TH, Rose JK (2008) The biochemistry and biology of extracellular plant lipid‐transfer proteins (LTPs). Protein Sci 17(2):191–198PubMedPubMedCentralCrossRefGoogle Scholar
  126. Yi B, Zeng F, Lei S et al (2010) Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant J Cell Mol Biol 63(6):925–938CrossRefGoogle Scholar
  127. Zhang D, Li H (2014) Exine export in pollen. In: Plant ABC transporters. Springer International Publishing, pp 49–62Google Scholar
  128. Zhang D, Yang L (2014) Specification of tapetum and microsporocyte cells within the anther. Curr Opin Plant Biol 17C:49–55CrossRefGoogle Scholar
  129. Zhang Z, Zhu J, Gao J et al (2007) Transcription factor AtMYB103 is required for anther development by regulating tapetum development, callose dissolution and exine formation in Arabidopsis. Plant J 52(3):528–538PubMedCrossRefGoogle Scholar
  130. Zhang D, Liang W, Yuan Z et al (2008) Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol Plant 1(4):599–610PubMedCrossRefGoogle Scholar
  131. Zhang D, Liang W, Yin C et al (2010) OsC6, encoding a lipid transfer protein, is required for postmeiotic anther development in rice. Plant Physiol 154(1):149–162PubMedPubMedCentralCrossRefGoogle Scholar
  132. Zhang D, Luo X, Zhu L (2011) Cytological analysis and genetic control of rice anther development. J Genet Genomics 38(9):379–390PubMedCrossRefGoogle Scholar
  133. Zhang D, Liu D, Lv X et al (2014) The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. Plant Cell 26(7):2939–2961PubMedPubMedCentralCrossRefGoogle Scholar
  134. Zhu L, Shi J, Zhao G et al (2013) Post-meiotic deficient anther1 (PDA1) encodes an ABC transporter required for the development of anther cuticle and pollen exine in rice. J Plant Biol 56(1):59–68CrossRefGoogle Scholar
  135. Zinkl G, Zwiebel B, Grier D et al (1999) Pollen-stigma adhesion in Arabidopsis: a species-specific interaction mediated by lipophilic molecules in the pollen exine. Development 126(23):5431–5440PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Life Sciences and BiotechnologyShanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations