Plant Sphingolipid Metabolism and Function

  • Kyle D. Luttgeharm
  • Athen N. Kimberlin
  • Edgar B. CahoonEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 86)


Sphingolipids, a once overlooked class of lipids in plants, are now recognized as abundant and essential components of plasma membrane and other endomembranes of plant cells. In addition to providing structural integrity to plant membranes, sphingolipids contribute to Golgi trafficking and protein organizational domains in the plasma membrane. Sphingolipid metabolites have also been linked to the regulation of cellular processes, including programmed cell death. Advances in mass spectrometry-based sphingolipid profiling and analyses of Arabidopsis mutants have enabled fundamental discoveries in sphingolipid structural diversity, metabolism, and function that are reviewed here. These discoveries are laying the groundwork for the tailoring of sphingolipid biosynthesis and catabolism for improved tolerance of plants to biotic and abiotic stresses.


Sphingolipid Ceramide Long-chain bases Plasma membrane Lipid-signaling Lipid rafts Programed cell death 



Research that contributed to this chapter was supported by the U.S. National Science Foundation (Grant MCB-1158500).


  1. Abbas HK, Tanaka T, Duke SO, Porter JK, Wray EM, Hodges L, Sessions AE, Wang E, Merrill AH Jr, Riley RT (1994) Fumonisin- and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiol 106(3):1085–1093PubMedPubMedCentralGoogle Scholar
  2. Alden KP, Dhondt-Cordelier S, McDonald KL, Reape TJ, Ng CK, McCabe PF, Leaver CJ (2011) Sphingolipid long chain base phosphates can regulate apoptotic-like programmed cell death in plants. Biochem Biophys Res Commun 410(3):574–580PubMedCrossRefGoogle Scholar
  3. Ali MR, Cheng KH, Huang J (2006) Ceramide drives cholesterol out of the ordered lipid bilayer phase into the crystal phase in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/cholesterol/ceramide ternary mixtures. Biochemistry 45(41):12629–12638PubMedCrossRefGoogle Scholar
  4. Bach L, Michaelson LV, Haslam R, Bellec Y, Gissot L, Marion J, Da Costa M, Boutin JP, Miquel M, Tellier F, Domergue F, Markham JE, Beaudoin F, Napier JA, Faure JD (2008) The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development. Proc Natl Acad Sci U S A 105(38):14727–14731PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bach L, Gissot L, Marion J, Tellier F, Moreau P, Satiat-Jeunemaitre B, Palauqui JC, Napier JA, Faure JD (2011) Very-long-chain fatty acids are required for cell plate formation during cytokinesis in Arabidopsis thaliana. J Cell Sci 124(19):3223–3234PubMedCrossRefGoogle Scholar
  6. Bayer EM, Mongrand S, Tilsner J (2014) Specialised membrane domains of plasmodesmata, plant intercellular nanopores. Front Plant Sci 5:507PubMedPubMedCentralCrossRefGoogle Scholar
  7. Beaudoin F, Gable K, Sayanova O, Dunn T, Napier JA (2002) A Saccharomyces cerevisiae gene required for heterologous fatty acid elongase activity encodes a microsomal β-keto-reductase. J Biol Chem 277(13):11481–11488PubMedCrossRefGoogle Scholar
  8. Beckmann C, Rattke J, Oldham NJ, Sperling P, Heinz E, Boland W (2002) Characterization of a Δ8-sphingolipid desaturase from higher plants: a stereochemical and mechanistic study on the origin of E, Z isomers. Angew Chem Int Ed 41(13):2298–2300CrossRefGoogle Scholar
  9. Beeler T, Bacikova D, Gable K, Hopkins L, Johnson C, Slife H, Dunn T (1998) The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2+-sensitive csg2Δ mutant. J Biol Chem 273(46):30688–30694PubMedCrossRefGoogle Scholar
  10. Berkey R, Bendigeri D, Xiao S (2012) Sphingolipids and plant defense/disease: the “death” connection and beyond. Front Plant Sci 3:68PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bi FC, Liu Z, Wu JX, Liang H, Xi XL, Fang C, Sun TJ, Yin J, Dai GY, Rong C, Greenberg JT, Su WW, Yao N (2014) Loss of ceramide kinase in Arabidopsis impairs defenses and promotes ceramide accumulation and mitochondrial H2O2 bursts. Plant Cell 26(8):3449–3467PubMedPubMedCentralCrossRefGoogle Scholar
  12. Blacklock BJ, Jaworski JG (2006) Substrate specificity of Arabidopsis 3-ketoacyl-CoA synthases. Biochem Biophys Res Commun 346(2):583–590PubMedCrossRefGoogle Scholar
  13. Boot RG, Verhoek M, Donker-Koopman W, Strijland A, van Marle J, Overkleeft HS, Wennekes T, Aerts JMFG (2007) Identification of the non-lysosomal glucosylceramidase as β-glucosidase 2. J Biol Chem 282(2):1305–1312PubMedCrossRefGoogle Scholar
  14. Brandwagt BF, Mesbah LA, Takken FLW, Laurent PL, Kneppers TJA, Hille J, Nijkamp HJJ (2000) A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp lycopersici toxins and fumonisin B1. Proc Natl Acad Sci U S A 97(9):4961–4966PubMedPubMedCentralCrossRefGoogle Scholar
  15. Breslow DK, Collins SR, Bodenmiller B, Aebersold R, Simons K, Shevchenko A, Ejsing CS, Weissman JS (2010) Orm family proteins mediate sphingolipid homeostasis. Nature 463(7284):1048–1053PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brodersen P, Petersen M, Pike H, Olszak B, Skov S, Odum N, Jørgensen L, Brown R, Mundy J (2002) Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev 16(4):490–502PubMedPubMedCentralCrossRefGoogle Scholar
  17. Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68(3):533–544PubMedCrossRefGoogle Scholar
  18. Bure C, Cacas JL, Wang F, Gaudin K, Domergue F, Mongrand S, Schmitter JM (2011) Fast screening of highly glycosylated plant sphingolipids by tandem mass spectrometry. Rapid Commun Mass Spectrom 25(20):3131–3145PubMedCrossRefGoogle Scholar
  19. Burger KN, van der Bijl P, van Meer G (1996) Topology of sphingolipid galactosyl transferases in ER and Golgi: transbilayer movement of monohexosyl sphingolipids is required for higher glycosphingolipid biosynthesis. J Cell Biol 133(1):15–28PubMedCrossRefGoogle Scholar
  20. Cacas JL, Furt F, Le Guedard M, Schmitter JM, Bure C, Gerbeau-Pissot P, Moreau P, Bessoule JJ, Simon-Plas F, Mongrand S (2012) Lipids of plant membrane rafts. Prog Lipid Res 51(3):272–299PubMedCrossRefGoogle Scholar
  21. Cacas JL, Bure C, Furt F, Maalouf JP, Badoc A, Cluzet S, Schmitter JM, Antajan E, Mongrand S (2013) Biochemical survey of the polar head of plant glycosylinositolphosphoceramides unravels broad diversity. Phytochemistry 96:191–200PubMedCrossRefGoogle Scholar
  22. Cahoon EB, Lynch DV (1991) Analysis of glucocerebrosides of rye (Secale cereale L. cv Puma) leaf and plasma membrane. Plant Physiol 95(1):58–68PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cantrel C, Vazquez T, Puyaubert J, Reze N, Lesch M, Kaiser WM, Dutilleul C, Guillas I, Zachowski A, Baudouin E (2011) Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol 189(2):415–427PubMedCrossRefGoogle Scholar
  24. Carter HE, Gigg RH, Law JH, Nakayama T, Weber E (1958) Biochemistry of the sphingolipides: structure of phytoglycolipide. J Biol Chem 233(6):1309–1314PubMedGoogle Scholar
  25. Chao DY, Gable K, Chen M, Baxter I, Dietrich CR, Cahoon EB, Guerinot ML, Lahner B, Lu S, Markham JE, Morrissey J, Han G, Gupta SD, Harmon JM, Jaworski JG, Dunn TM, Salt DE (2011) Sphingolipids in the root play an important role in regulating the leaf ionome in Arabidopsis thaliana. Plant Cell 23(3):1061–1081PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chen M, Thelen JJ (2013) ACYL-LIPID DESATURASE2 is required for chilling and freezing tolerance in Arabidopsis. Plant Cell 25(4):1430–1444PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chen M, Han G, Dietrich CR, Dunn TM, Cahoon EB (2006) The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase. Plant Cell 18(12):3576–3593PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chen M, Markham JE, Dietrich CR, Jaworski JG, Cahoon EB (2008) Sphingolipid long-chain base hydroxylation is important for growth and regulation of sphingolipid content and composition in Arabidopsis. Plant Cell 20(7):1862–1878PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chen M, Cahoon E, Saucedo-García M, Plasencia J, Gavilanes-Ruíz M (2010) Plant sphingolipids: structure, synthesis and function. In: Wada H, Murata N (eds) Lipids in photosynthesis, vol 30, Advances in Photosynthesis and Respiration. Springer, Dordrecht, p 77CrossRefGoogle Scholar
  30. Chen M, Markham JE, Cahoon EB (2012) Sphingolipid Δ8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis. Plant J 69(5):769–781PubMedCrossRefGoogle Scholar
  31. Chen LY, Shi DQ, Zhang WJ, Tang ZS, Liu J, Yang WC (2015) The Arabidopsis alkaline ceramidase TOD1 is a key turgor pressure regulator in plant cells. Nat Commun 6:6030PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chueasiri C, Chunthong K, Pitnjam K, Chakhonkaen S, Sangarwut N, Sangsawang K, Suksangpanomrung M, Michaelson LV, Napier JA, Muangprom A (2014) Rice ORMDL controls sphingolipid homeostasis affecting fertility resulting from abnormal pollen development. PLoS One 9(9):e106386PubMedPubMedCentralCrossRefGoogle Scholar
  33. Costaglioli P, Joubes K, Garcia C, Stef M, Arveiler B, Lessire R, Garbay B (2005) Profiling candidate genes involved in wax biosynthesis in Arabidopsis thaliana by microarray analysis. BBA-Mol Cell Biol Lipids 1734(3):247–258CrossRefGoogle Scholar
  34. Coursol S, Fan LM, Le Stunff H, Spiegel S, Gilroy S, Assmann SM (2003) Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423(6940):651–654PubMedCrossRefGoogle Scholar
  35. Coursol S, Le Stunff H, Lynch D, Gilroy S, Assmann S, Spiegel S (2005) Arabidopsis sphingosine kinase and the effects of phytosphingosine-1-phosphate on stomatal aperture. Plant Physiol 137(2):724–737PubMedPubMedCentralCrossRefGoogle Scholar
  36. Curatolo W (1987) The physical properties of glycolipids. Biochim Biophys Acta 906(2):111–136PubMedCrossRefGoogle Scholar
  37. de Almeida RF, Fedorov A, Prieto M (2003) Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: boundaries and composition of lipid rafts. Biophys J 85(4):2406–2416PubMedPubMedCentralCrossRefGoogle Scholar
  38. Denny PW, Shams-Eldin H, Price HP, Smith DF, Schwarz RT (2006) The protozoan inositol phosphorylceramide synthase – a novel drug target that defines a new class of sphingolipid synthase. J Biol Chem 281(38):28200–28209PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dietrich CR, Han G, Chen M, Berg RH, Dunn TM, Cahoon EB (2008) Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability. Plant J 54(2):284–298PubMedCrossRefGoogle Scholar
  40. Duan RD, Bergman T, Xu N, Wu J, Cheng Y, Duan JX, Nelander S, Palmberg C, Nilsson A (2003) Identification of human intestinal alkaline sphingomyelinase as a novel ecto-enzyme related to the nucleotide phosphodiesterase family. J Biol Chem 278(40):38528–38536PubMedCrossRefGoogle Scholar
  41. Dunn TM, Lynch DV, Michaelson LV, Napier JA (2004) A post-genomic approach to understanding sphingolipid metabolism in Arabidopsis thaliana. Ann Bot 93(5):483–497PubMedPubMedCentralCrossRefGoogle Scholar
  42. Estep TN, Calhoun WI, Barenholz Y, Biltonen RL, Shipley GG, Thompson TE (1980) Evidence for metastability in stearoylsphingomyelin bilayers. Biochemistry 19(1):20–24PubMedCrossRefGoogle Scholar
  43. Fiebig A, Mayfield JA, Miley NL, Chau S, Fischer RL, Preuss D (2000) Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems. Plant Cell 12(10):2001–2008PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gable K, Slife H, Bacikova D, Monaghan E, Dunn TM (2000) Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity. J Biol Chem 275(11):7597–7603PubMedCrossRefGoogle Scholar
  45. Gable K, Han G, Monaghan E, Bacikova D, Natarajan M, Williams R, Dunn TM (2002) Mutations in the yeast LCB1 and LCB2 genes, including those corresponding to the hereditary sensory neuropathy type I mutations, dominantly inactivate serine palmitoyltransferase. J Biol Chem 277(12):10194–10200PubMedCrossRefGoogle Scholar
  46. Gable K, Garton S, Napier JA, Dunn TM (2004) Functional characterization of the Arabidopsis thaliana orthologue of Tsc13p, the enoyl reductase of the yeast microsomal fatty acid elongating system. J Exp Bot 55(396):543–545PubMedCrossRefGoogle Scholar
  47. Gray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sijmons PC, Woodward FI, Schuch W, Heterington AM (2000) The HIC signalling pathway links CO2 perception to stomatal development. Nature 408(6813):713–716PubMedCrossRefGoogle Scholar
  48. Greenberg JT, Silverman FP, Liang H (2000) Uncoupling salicylic acid-dependent cell death and defense-related responses from disease resistance in the Arabidopsis mutant acd5. Genetics 156(1):341–350PubMedPubMedCentralGoogle Scholar
  49. Grilley MM, Stock SD, Dickson RC, Lester RL, Takemoto JY (1998) Syringomycin action gene SYR2 is essential for sphingolipid 4-hydroxylation in Saccharomyces cerevisiae. J Biol Chem 273(18):11062–11068PubMedCrossRefGoogle Scholar
  50. Grison MS, Brocard L, Fouillen L, Nicolas W, Wewer V, Dormann P, Nacir H, Benitez-Alfonso Y, Claverol S, Germain V, Boutte Y, Mongrand S, Bayer EM (2015) Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis. Plant Cell 27(4):1228–1250PubMedCrossRefGoogle Scholar
  51. Grosjean K, Mongrand S, Beney L, Simon-Plas F, Gerbeau-Pissot P (2015) Differential effect of plant lipids on membrane organization: specificities of phytosphingolipids and phytosterols. J Biol Chem 290(9):5810–5825PubMedPubMedCentralCrossRefGoogle Scholar
  52. Guillas I, Zachowski A, Baudouin E (2011) A matter of fat: interaction between nitric oxide and sphingolipid signaling in plant cold response. Plant Signal Behav 6(1):140–142PubMedPubMedCentralCrossRefGoogle Scholar
  53. Guillas I, Guellim A, Reze N, Baudouin E (2013) Long chain base changes triggered by a short exposure of Arabidopsis to low temperature are altered by AHb1 non-symbiotic haemoglobin overexpression. Plant Physiol Biochem 63:191–195PubMedCrossRefGoogle Scholar
  54. Guo L, Wang X (2012) Crosstalk between phospholipase D and sphingosine kinase in plant stress signaling. Front Plant Sci 3:51PubMedPubMedCentralCrossRefGoogle Scholar
  55. Guo L, Mishra G, Markham JE, Li M, Tawfall A, Welti R, Wang X (2012) Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis. J Biol Chem 287(11):8286–8296PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gupta SD, Gable K, Han GS, Borovitskaya A, Selby L, Dunn TM, Harmon JM (2009) Tsc10p and FVT1: topologically distinct short-chain reductases required for long-chain base synthesis in yeast and mammals. J Lipid Res 50(8):1630–1640PubMedPubMedCentralCrossRefGoogle Scholar
  57. Haak D, Gable K, Beeler T, Dunn T (1997) Hydroxylation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7p. J Biol Chem 272(47):29704–29710PubMedCrossRefGoogle Scholar
  58. Han G, Gable K, Yan L, Natarajan M, Krishnamurthy J, Gupta SD, Borovitskaya A, Harmon JM, Dunn TM (2004) The topology of the Lcb1p subunit of yeast serine palmitoyltransferase. J Biol Chem 279(51):53707–53716PubMedCrossRefGoogle Scholar
  59. Han G, Gupta SD, Gable K, Niranjanakumari S, Moitra P, Eichler F, Brown RH Jr, Harmon JM, Dunn TM (2009) Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. Proc Natl Acad Sci U S A 106(20):8186–8191PubMedPubMedCentralCrossRefGoogle Scholar
  60. Han S, Lone MA, Schneiter R, Chang A (2010) Orm1 and Orm2 are conserved endoplasmic reticulum membrane proteins regulating lipid homeostasis and protein quality control. Proc Natl Acad Sci U S A 107(13):5851–5856PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hanada K (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta 1632(1–3):16–30PubMedCrossRefGoogle Scholar
  62. Haslam TM, Kunst L (2013) Extending the story of very-long-chain fatty acid elongation. Plant Sci 210:93–107PubMedCrossRefGoogle Scholar
  63. Huang J, Feigenson GW (1999) A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys J 76(4):2142–2157PubMedPubMedCentralCrossRefGoogle Scholar
  64. Imai H, Nishiura H (2005) Phosphorylation of sphingoid long-chain bases in Arabidopsis: functional characterization and expression of the first sphingoid long-chain base Kinase gene in plants. Plant Cell Physiol 46(2):375–380PubMedCrossRefGoogle Scholar
  65. Imai H, Yamamoto K, Shibahara A, Miyatani S, Nakayama T (2000) Determining double-bond positions in monoenoic 2-hydroxy fatty acids of glucosylceramides by gas chromatography-mass spectrometry. Lipids 35(2):233–236PubMedCrossRefGoogle Scholar
  66. Joubes J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, Moreau P, Domergue F, Lessire R (2008) The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling and expression profiling. Plant Mol Biol 67(5):547–566PubMedCrossRefGoogle Scholar
  67. Karnovsky MJ, Kleinfeld AM, Hoover RL, Dawidowicz EA, McIntyre DE, Salzman EA, Klausner RD (1982) Lipid domains in membranes. Ann N Y Acad Sci 401:61–75PubMedCrossRefGoogle Scholar
  68. Kim T-H, Böhmer M, Hu H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61(1):561–591PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kim J, Jung JH, Lee SB, Go YS, Kim HJ, Cahoon R, Markham JE, Cahoon EB, Suh MC (2013) Arabidopsis 3-ketoacyl-coenzyme a synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids. Plant Physiol 162(2):567–580PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kimberlin AN, Majumder S, Han G, Chen M, Cahoon RE, Stone JM, Dunn TM, Cahoon EB (2013) Arabidopsis 56-amino acid serine palmitoyltransferase-interacting proteins stimulate sphingolipid synthesis, are essential, and affect mycotoxin sensitivity. Plant Cell 25(11):4627–4639PubMedPubMedCentralCrossRefGoogle Scholar
  71. Klose C, Ejsing CS, Garcia-Saez AJ, Kaiser HJ, Sampaio JL, Surma MA, Shevchenko A, Schwille P, Simons K (2010) Yeast lipids can phase-separate into micrometer-scale membrane domains. J Biol Chem 285(39):30224–30232PubMedPubMedCentralCrossRefGoogle Scholar
  72. Konig S, Feussner K, Schwarz M, Kaever A, Iven T, Landesfeind M, Ternes P, Karlovsky P, Lipka V, Feussner I (2012) Arabidopsis mutants of sphingolipid fatty acid α-hydroxylases accumulate ceramides and salicylates. New Phytol 196(4):1086–1097PubMedCrossRefGoogle Scholar
  73. Kruger F, Krebs M, Viotti C, Langhans M, Schumacher K, Robinson DG (2013) PDMP induces rapid changes in vacuole morphology in Arabidopsis root cells. J Exp Bot 64(2):529–540PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lachaud C, Prigent E, Thuleau P, Grat S, Da Silva D, Briere C, Mazars C, Cotelle V (2013) 14-3-3-Regulated Ca2+-dependent protein kinase CPK3 is required for sphingolipid-induced cell death in Arabidopsis. Cell Death Differ 20(2):209–217PubMedPubMedCentralCrossRefGoogle Scholar
  75. Laviad EL, Albee L, Pankova-Kholmyansky I, Epstein S, Park H, Merrill AH Jr, Futerman AH (2008) Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J Biol Chem 283(9):5677–5684PubMedCrossRefGoogle Scholar
  76. Lefebvre B, Furt F, Hartmann M-A, Michaelson LV, Carde J-P, Sargueil-Boiron F, Rossignol M, Napier JA, Cullimore J, Bessoule J-J, Mongrand S (2007) Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system. Plant Physiol 144(1):402–418PubMedPubMedCentralCrossRefGoogle Scholar
  77. Leipelt M, Warnecke D, Zahringer U, Ott C, Muller F, Hube B, Heinz E (2001) Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants, and fungi. J Biol Chem 276(36):33621–33629PubMedCrossRefGoogle Scholar
  78. Liang H, Yao N, Song JT, Luo S, Lu H, Greenberg JT (2003) Ceramides modulate programmed cell death in plants. Genes Dev 17(21):2636–2641PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lin S-S, Martin R, Mongrand S, Vandenabeele S, Chen K-C, Jang I-C, Chua N-H (2008) RING1 E3 ligase localizes to plasma membrane lipid rafts to trigger FB1-induced programmed cell death in Arabidopsis. Plant J 56(4):550–561PubMedCrossRefGoogle Scholar
  80. Lunden BM, Lofgren H, Pascher I (1977) Accommodation of hydroxyl groups and their hydrogen bond system in a hydrocarbon matrix. Chem Phys Lipids 20(4):263–271PubMedCrossRefGoogle Scholar
  81. Luttgeharm KD, Kimberlin AN, Cahoon RE, Cerny RL, Napier JA, Markham JE, Cahoon EB (2015) Sphingolipid metabolism is strikingly different between pollen and leaf in Arabidopsis as revealed by compositional and gene expression profiling. Phytochemistry 115:121–129PubMedCrossRefGoogle Scholar
  82. Lynch DV, Dunn TM (2004) An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function. New Phytol 161(3):677–702CrossRefGoogle Scholar
  83. Lynch DV, Steponkus PL (1987) Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma). Plant Physiol 83(4):761–767PubMedPubMedCentralCrossRefGoogle Scholar
  84. Mao C, Obeid LM (2008) Ceramidases: regulators of cellular responses mediated by ceramide, sphingosine, and sphingosine-1-phosphate. Biochim Biophys Acta 1781(9):424–434PubMedPubMedCentralCrossRefGoogle Scholar
  85. Mao CG, Xu RJ, Bielawska A, Obeid LM (2000) Cloning of an alkaline ceramidase from Saccharomyces cerevisiae – an enzyme with reverse (CoA-independent) ceramide synthase activity. J Biol Chem 275(10):6876–6884PubMedCrossRefGoogle Scholar
  86. Markham JE, Jaworski JG (2007) Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21(7):1304–1314PubMedCrossRefGoogle Scholar
  87. Markham JE, Li J, Cahoon EB, Jaworski JG (2006) Separation and identification of major plant sphingolipid classes from leaves. J Biol Chem 281(32):22684–22694PubMedCrossRefGoogle Scholar
  88. Markham JE, Molino D, Gissot L, Bellec Y, Hematy K, Marion J, Belcram K, Palauqui JC, Satiat-Jeunemaitre B, Faure JD (2011) Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis. Plant Cell 23(6):2362–2378PubMedPubMedCentralCrossRefGoogle Scholar
  89. Markham JE, Lynch DV, Napier JA, Dunn TM, Cahoon EB (2013) Plant sphingolipids: function follows form. Curr Opin Plant Biol 16(3):350–357PubMedCrossRefGoogle Scholar
  90. Melser S, Batailler B, Peypelut M, Poujol C, Bellec Y, Wattelet-Boyer V, Maneta-Peyret L, Faure JD, Moreau P (2010) Glucosylceramide biosynthesis is involved in Golgi morphology and protein secretion in plant cells. Traffic 11(4):479–490PubMedCrossRefGoogle Scholar
  91. Melser S, Molino D, Batailler B, Peypelut M, Laloi M, Wattelet-Boyer V, Bellec Y, Faure JD, Moreau P (2011) Links between lipid homeostasis, organelle morphodynamics and protein trafficking in eukaryotic and plant secretory pathways. Plant Cell Rep 30(2):177–193PubMedCrossRefGoogle Scholar
  92. Michaelson LV, Zauner S, Markham JE, Haslam RP, Desikan R, Mugford S, Albrecht S, Warnecke D, Sperling P, Heinz E, Napier JA (2009) Functional characterization of a higher plant sphingolipid Δ4-desaturase: defining the role of sphingosine and sphingosine-1-phosphate in Arabidopsis. Plant Physiol 149(1):487–498PubMedPubMedCentralCrossRefGoogle Scholar
  93. Mina JG, Okada Y, Wansadhipathi-Kannangara NK, Pratt S, Shams-Eldin H, Schwarz RT, Steel PG, Fawcett T, Denny PW (2010) Functional analyses of differentially expressed isoforms of the Arabidopsis inositol phosphorylceramide synthase. Plant Mol Biol 73(4–5):399–407PubMedCrossRefGoogle Scholar
  94. Mitchell AG, Martin CE (1997) Fah1p, a Saccharomyces cerevisiae cytochrome b5 fusion protein, and its Arabidopsis thaliana homolog that lacks the cytochrome b5 domain both function in the α-hydroxylation of sphingolipid-associated very long chain fatty acids. J Biol Chem 272(45):28281–28288PubMedCrossRefGoogle Scholar
  95. Mizutani Y, Kihara A, Igarashi Y (2005) Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem J 390:263–271PubMedPubMedCentralCrossRefGoogle Scholar
  96. Mizutani Y, Kihara A, Igarashi Y (2006) LASS3 (longevity assurance homologue 3) is a mainly testis-specific (dihydro)ceramide synthase with relatively broad substrate specificity. Biochem J 398:531–538PubMedPubMedCentralCrossRefGoogle Scholar
  97. Mongrand S, Morel J, Laroche J, Claverol S, Carde JP, Hartmann MA, Bonneu M, Simon-Plas F, Lessire R, Bessoule JJ (2004) Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane. J Biol Chem 279(35):36277–36286PubMedCrossRefGoogle Scholar
  98. Morel J, Claverol S, Mongrand S, Furt F, Fromentin J, Bessoule JJ, Blein JP, Simon-Plas F (2006) Proteomics of plant detergent-resistant membranes. Mol Cell Proteomics 5(8):1396–1411PubMedCrossRefGoogle Scholar
  99. Mortimer JC, Yu XL, Albrecht S, Sicilia F, Huichalaf M, Ampuero D, Michaelson LV, Murphy AM, Matsunaga T, Kurz S, Stephens E, Baldwin TC, Ishii T, Napier JA, Weber APM, Handford MG, Dupree P (2013) Abnormal glycosphingolipid mannosylation triggers salicylic acid-mediated responses in arabidopsis. Plant Cell 25(5):1881–1894PubMedPubMedCentralCrossRefGoogle Scholar
  100. Muir A, Ramachandran S, Roelants FM, Timmons G, Thorner J (2014) TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids. Elife 3:e03779PubMedCentralCrossRefGoogle Scholar
  101. Nagano M, Ihara-Ohori Y, Imai H, Inada N, Fujimoto M, Tsutsumi N, Uchimiya H, Kawai-Yamada M (2009) Functional association of cell death suppressor, Arabidopsis Bax inhibitor-1, with fatty acid 2-hydroxylation through cytochrome b5. Plant J 58(1):122–134PubMedCrossRefGoogle Scholar
  102. Nagano M, Takahara K, Fujimoto M, Tsutsumi N, Uchimiya H, Kawai-Yamada M (2012) Arabidopsis sphingolipid fatty acid 2-hydroxylases (AtFAH1 and AtFAH2) are functionally differentiated in fatty acid 2-hydroxylation and stress responses. Plant Physiol 159(3):1138–1148PubMedPubMedCentralCrossRefGoogle Scholar
  103. Nagano M, Ishikawa T, Ogawa Y, Iwabuchi M, Nakasone A, Shimamoto K, Uchimiya H, Kawai-Yamada M (2014) Arabidopsis Bax inhibitor-1 promotes sphingolipid synthesis during cold stress by interacting with ceramide-modifying enzymes. Planta 240(1):77–89PubMedCrossRefGoogle Scholar
  104. Nakagawa N, Kato M, Takahashi Y, Shimazaki K, Tamura K, Tokuji Y, Kihara A, Imai H (2012) Degradation of long-chain base 1-phosphate (LCBP) in Arabidopsis: functional characterization of LCBP phosphatase involved in the dehydration stress response. J Plant Res 125(3):439–449PubMedCrossRefGoogle Scholar
  105. Ng CKY, Carr K, McAinsh MR, Powell B, Hetherington AM (2001) Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature 410(6828):596–599PubMedCrossRefGoogle Scholar
  106. Nishikawa M, Hosokawa K, Ishiguro M, Minamioka H, Tamura K, Hara-Nishimura I, Takahashi Y, Shimazaki K, Imai H (2008) Degradation of sphingoid long-chain base 1-phosphates (LCB-1Ps): functional characterization and expression of AtDPL1 encoding LCB-1P lyase involved in the dehydration stress response in Arabidopsis. Plant Cell Physiol 49(11):1758–1763PubMedCrossRefGoogle Scholar
  107. Pascher I (1976) Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta 455(2):433–451PubMedCrossRefGoogle Scholar
  108. Pata MO, Wu BX, Bielawski J, Xiong TC, Hannun YA, Ng CKY (2008) Molecular cloning and characterization of OsCDase, a ceramidase enzyme from rice. Plant J 55(6):1000–1009PubMedPubMedCentralCrossRefGoogle Scholar
  109. Paul S, Gable K, Beaudoin F, Cahoon E, Jaworski J, Napier JA, Dunn TM (2006) Members of the Arabidopsis FAE1-like 3-ketoacyl-CoA synthase gene family substitute for the Elop proteins of Saccharomyces cerevisiae. J Biol Chem 281(14):9018–9029PubMedCrossRefGoogle Scholar
  110. Peer M, Stegmann M, Mueller MJ, Waller F (2010) Pseudomonas syringae infection triggers de novo synthesis of phytosphingosine from sphinganine in Arabidopsis thaliana. FEBS Lett 584(18):4053–4056PubMedCrossRefGoogle Scholar
  111. Rennie EA, Ebert B, Miles GP, Cahoon RE, Christiansen KM, Stonebloom S, Khatab H, Twell D, Petzold CJ, Adams PD, Dupree P, Heazlewood JL, Cahoon EB, Scheller HV (2014) Identification of a sphingolipid α-glucuronosyltransferase that is essential for pollen function in Arabidopsis. Plant Cell 26(8):3314–3325PubMedPubMedCentralCrossRefGoogle Scholar
  112. Riebeling C, Allegood JC, Wang E, Merrill AH, Futerman AH (2003) Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J Biol Chem 278(44):43452–43459PubMedCrossRefGoogle Scholar
  113. Rittenour WR, Chen M, Cahoon EB, Harris SD (2011) Control of glucosylceramide production and morphogenesis by the Bar1 ceramide synthase in Fusarium graminearum. PLoS One 6:e19385PubMedPubMedCentralCrossRefGoogle Scholar
  114. Roche Y, Gerbeau-Pissot P, Buhot B, Thomas D, Bonneau L, Gresti J, Mongrand S, Perrier-Cornet JM, Simon-Plas F (2008) Depletion of phytosterols from the plant plasma membrane provides evidence for disruption of lipid rafts. FASEB J 22(11):3980–3991PubMedCrossRefGoogle Scholar
  115. Roelants FM, Breslow DK, Muir A, Weissman JS, Thorner J (2011) Protein kinase Ypk1 phosphorylates regulatory proteins Orm1 and Orm2 to control sphingolipid homeostasis in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 108(48):19222–19227PubMedPubMedCentralCrossRefGoogle Scholar
  116. Ryan PR, Liu Q, Sperling P, Dong B, Franke S, Delhaize E (2007) A higher plant Δ8 sphingolipid desaturase with a preference for (Z)-isomer formation confers aluminum tolerance to yeast and plants. Plant Physiol 144(4):1968–1977PubMedPubMedCentralCrossRefGoogle Scholar
  117. Sandhoff K (2013) Metabolic and cellular bases of sphingolipidoses. Biochem Soc Trans 41(6):1562–1568PubMedCrossRefGoogle Scholar
  118. Saucedo-García M, Guevara-García A, González-Solís A, Cruz-García F, Vázquez-Santana S, Markham J, Lozano-Rosas M, Dietrich C, Ramos-Vega M, Cahoon E, Gavilanes-Ruíz M (2011) MPK6, sphinganine and the LCB2a gene from serine palmitoyltransferase are required in the signaling pathway that mediates cell death induced by long chain bases in Arabidopsis. New Phytol 191(4):943–957PubMedCrossRefGoogle Scholar
  119. Shanklin J, Cahoon EB (1998) Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol 49:611–641PubMedCrossRefGoogle Scholar
  120. Shi L, Bielawski J, Mu J, Dong H, Teng C, Zhang J, Yang X, Tomishige N, Hanada K, Hannun YA, Zuo J (2007) Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Res 17(12):1030–1040PubMedCrossRefGoogle Scholar
  121. Simanshu DK, Zhai X, Munch D, Hofius D, Markham JE, Bielawski J, Bielawska A, Malinina L, Molotkovsky JG, Mundy JW, Patel DJ, Brown RE (2014) Arabidopsis accelerated cell death 11, ACD11, is a ceramide-1-phosphate transfer protein and intermediary regulator of phytoceramide levels. Cell Rep 6(2):388–399PubMedPubMedCentralCrossRefGoogle Scholar
  122. Simons K, van Meer G (1988) Lipid sorting in epithelial cells. Biochemistry 27(17):6197–6202PubMedCrossRefGoogle Scholar
  123. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387(6633):569–572PubMedCrossRefGoogle Scholar
  124. Smith MA, Dauk M, Ramadan H, Yang H, Seamons LE, Haslam RP, Beaudoin F, Ramirez-Erosa I, Forseille L (2013) Involvement of Arabidopsis ACYL-COENZYME A DESATURASE-LIKE2 (At2g31360) in the biosynthesis of the very-long-chain monounsaturated fatty acid components of membrane lipids. Plant Physiol 161(1):81–96PubMedPubMedCentralCrossRefGoogle Scholar
  125. Spassieva SD, Markham JE, Hille J (2002) The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death. Plant J 32(4):561–572PubMedCrossRefGoogle Scholar
  126. Sperling P, Schmidt H, Heinz E (1995) A cytochrome-b containing fusion protein similar to plant acyl lipid desaturases. Eur J Biochem 232(3):798–805PubMedCrossRefGoogle Scholar
  127. Sperling P, Zahringer U, Heinz E (1998) A sphingolipid desaturase from higher plants. Identification of a new cytochrome b5 fusion protein. J Biol Chem 273(44):28590–28596PubMedCrossRefGoogle Scholar
  128. Sperling P, Ternes P, Moll H, Franke S, Zahringer U, Heinz E (2001) Functional characterization of sphingolipid C4-hydroxylase genes from Arabidopsis thaliana. FEBS Lett 494(1–2):90–94PubMedCrossRefGoogle Scholar
  129. Sperling P, Franke S, Luthje S, Heinz E (2005) Are glucocerebrosides the predominant sphingolipids in plant plasma membranes? Plant Physiol Biochem 43(12):1031–1038PubMedCrossRefGoogle Scholar
  130. Stone JM, Heard JE, Asai T, Ausubel FM (2000) Simulation of fungal-mediated cell death by fumonisin B1 and selection of fumonisin B 1-resistant (fbr) Arabidopsis mutants. Plant Cell 12(10):1811–1822PubMedPubMedCentralCrossRefGoogle Scholar
  131. Strub GM, Maceyka M, Hait NC, Milstien S, Spiegel S (2010) Extracellular and intracellular actions of sphingosine-1-phosphate. Adv Exp Med Biol 688:141–155PubMedPubMedCentralCrossRefGoogle Scholar
  132. Takahashi Y, Berberich T, Kanzaki H, Matsumura H, Saitoh H, Kusano T, Terauchi R (2009) Serine palmitoyltransferase, the first step enzyme in sphingolipid biosynthesis, is involved in nonhost resistance. Mol Plant Microbe Interact 22(1):31–38PubMedCrossRefGoogle Scholar
  133. Tamura K, Mitsuhashi N, Hara-Nishimura I, Imai H (2001) Characterization of an Arabidopsis cDNA encoding a subunit of serine palmitoyltransferase, the initial enzyme in sphingolipid biosynthesis. Plant Cell Physiol 42(11):1274–1281PubMedCrossRefGoogle Scholar
  134. Teng C, Dong H, Shi L, Deng Y, Mu J, Zhang J, Yang X, Zuo J (2008) Serine palmitoyltransferase, a key enzyme for de novo synthesis of sphingolipids, is essential for male gametophyte development in Arabidopsis. Plant Physiol 146(3):1322–1332PubMedPubMedCentralCrossRefGoogle Scholar
  135. Ternes P, Franke S, Zahringer U, Sperling P, Heinz E (2002) Identification and characterization of a sphingolipid Δ4-desaturase family. J Biol Chem 277(28):25512–25518PubMedCrossRefGoogle Scholar
  136. Ternes P, Feussner K, Werner S, Lerche J, Iven T, Heilmann I, Riezman H, Feussner I (2011) Disruption of the ceramide synthase LOH1 causes spontaneous cell death in Arabidopsis thaliana. New Phytol 192(4):841–854PubMedCrossRefGoogle Scholar
  137. Thudichum JLW (1884) A treatise on the chemical constitution of the brain. Baillière, Tindall and Cox, LondonGoogle Scholar
  138. Tjellstrom H, Hellgren LI, Wieslander A, Sandelius AS (2010) Lipid asymmetry in plant plasma membranes: phosphate deficiency-induced phospholipid replacement is restricted to the cytosolic leaflet. FASEB J 24(4):1128–1138Google Scholar
  139. Todd J, Post-Beittenmiller D, Jaworski Jan G (1999) KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J 17(2):119–130PubMedCrossRefGoogle Scholar
  140. Townley HE, McDonald K, Jenkins GI, Knight MR, Leaver CJ (2005) Ceramides induce programmed cell death in Arabidopsis cells in a calcium-dependent manner. Biol Chem 386(2):161–166PubMedCrossRefGoogle Scholar
  141. Trenkamp S, Martin W, Tietjen K (2004) Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides. Proc Natl Acad Sci U S A 101(32):11903–11908PubMedPubMedCentralCrossRefGoogle Scholar
  142. Tsegaye Y, Richardson CG, Bravo JE, Mulcahy BJ, Lynch DV, Markham JE, Jaworski JG, Chen M, Cahoon EB, Dunn TM (2007) Arabidopsis mutants lacking long chain base phosphate lyase are fumonisin-sensitive and accumulate trihydroxy-18:1 long chain base phosphate. J Biol Chem 282(38):28195–28206PubMedCrossRefGoogle Scholar
  143. Uemura M, Steponkus PL (1994) A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance. Plant Physiol 104(2):479–496PubMedPubMedCentralGoogle Scholar
  144. Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana. effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol 109(1):15–30PubMedPubMedCentralGoogle Scholar
  145. van Genderen IL, van Meer G, Slot JW, Geuze HJ, Voorhout WF (1991) Subcellular localization of Forssman glycolipid in epithelial MDCK cells by immuno-electron microscopy after freeze-substitution. J Cell Biol 115(4):1009–1019PubMedCrossRefGoogle Scholar
  146. van Meer G, Simons K (1988) Lipid polarity and sorting in epithelial cells. J Cell Biochem 36(1):51–58PubMedCrossRefGoogle Scholar
  147. van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124PubMedPubMedCentralCrossRefGoogle Scholar
  148. Venkataraman K, Riebeling C, Bodennec J, Riezman H, Allegood JC, Sullards MC, Merrill AH Jr, Futerman AH (2002) Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. J Biol Chem 277(38):35642–35649PubMedCrossRefGoogle Scholar
  149. Verhoek B, Haas R, Wrage K, Linscheid M, Heinz E (1983) Lipids and enzymatic-activities in vacuolar membranes isolated via protoplasts from oat primary leaves. Z Naturforsch 38(9–10):770–777Google Scholar
  150. Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE, Tsegaye Y, Dunn TM, Wang GL, Bellizzi M, Parsons JF, Morrissey D, Bravo JE, Lynch DV, Xiao S (2008) An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 20(11):3163–3179PubMedPubMedCentralCrossRefGoogle Scholar
  151. Worrall D, Liang YK, Alvarez S, Holroyd GH, Spiegel S, Panagopulos M, Gray JE, Hetherington AM (2008) Involvement of sphingosine kinase in plant cell signalling. Plant J 56(1):64–72PubMedPubMedCentralCrossRefGoogle Scholar
  152. Wu J-X, Li J, Liu Z, Yin J, Chang Z-Y, Rong C, Wu J-L, Bi F-C, Yao N (2015) The Arabidopsis ceramidase AtACER functions in disease resistance and salt tolerance. Plant J 81(5):767–780PubMedCrossRefGoogle Scholar
  153. Yang Z, Jean-Baptiste G, Khoury C, Greenwood MT (2005) The mouse sphingomyelin synthase 1 (SMS1) gene is alternatively spliced to yield multiple transcripts and proteins. Gene 363:123–132PubMedCrossRefGoogle Scholar
  154. Yang H, Richter GL, Wang X, Mlodzinska E, Carraro N, Ma G, Jenness M, Chao DY, Peer WA, Murphy AS (2012) Sterols and sphingolipids differentially function in trafficking of the Arabidopsis ABCB19 auxin transporter. Plant J 74(1):37–47CrossRefGoogle Scholar
  155. Yephremov A, Wisman E, Huijser P, Huijser C, Wellesen K, Saedler H (1999) Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell 11(11):2187–2201PubMedPubMedCentralCrossRefGoogle Scholar
  156. Yoshida S, Kawata T, Uemura M, Niki T (1986) Isolation and characterization of tonoplast from chilling-sensitive etiolated seedlings of Vigna radiata L. Plant Physiol 80(1):161–166PubMedPubMedCentralCrossRefGoogle Scholar
  157. Zheng H, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17(5):1467–1481PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kyle D. Luttgeharm
    • 1
  • Athen N. Kimberlin
    • 1
  • Edgar B. Cahoon
    • 1
    Email author
  1. 1.Center for Plant Science Innovation and Department of BiochemistryUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations