High-Throughput Genetics Strategies for Identifying New Components of Lipid Metabolism in the Green Alga Chlamydomonas reinhardtii

  • Xiaobo Li
  • Martin C. JonikasEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 86)


Microalgal lipid metabolism is of broad interest because microalgae accumulate large amounts of triacylglycerols (TAGs) that can be used for biodiesel production (Durrett et al Plant J 54(4):593–607, 2008; Hu et al Plant J 54(4):621–639, 2008). Additionally, green algae are close relatives of land plants and serve as models to understand conserved lipid metabolism pathways in the green lineage. The green alga Chlamydomonas reinhardtii (Chlamydomonas hereafter) is a powerful model organism for understanding algal lipid metabolism. Various methods have been used to screen Chlamydomonas mutants for lipid amount or composition, and for identification of the mutated loci in mutants of interest. In this chapter, we summarize the advantages and caveats for each of these methods with a focus on screens for mutants with perturbed TAG content. We also discuss technical opportunities and new tools that are becoming available for screens of mutants altered in TAG content or perturbed in other processes in Chlamydomonas.


Triacylglycerol Lipids High-throughput genetics Chlamydomonas Algae Nitrogen deprivation Lipid analysis Fluorescence-activated cell sorting Lipid droplets 



We thank Arthur Grossman, Robert Jinkerson, Bensheng Liu, Liz Freeman Rosenzweig and Jian Xu for critical reading of the manuscript. This work was supported by the Carnegie Institution for Science and a grant from the National Science Foundation (MCB-1146621).


  1. Berthold P, Schmitt R, Mages W (2002) An engineered Streptomyces hygroscopicus aph 7″ gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153(4):401–412. doi: 10.1078/14344610260450136 PubMedCrossRefGoogle Scholar
  2. Blaby IK, Glaesener AG, Mettler T, Fitz-Gibbon ST, Gallaher SD, Liu B, Boyle NR, Kropat J, Stitt M, Johnson S, Benning C, Pellegrini M, Casero D, Merchant SS (2013) Systems-level analysis of nitrogen starvation-induced modifications of carbon metabolism in a Chlamydomonas reinhardtii starchless mutant. Plant Cell 25(11):4305–4323. doi: 10.1105/tpc.113.117580 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Boyle NR, Page MD, Liu B, Blaby IK, Casero D, Kropat J, Cokus SJ, Hong-Hermesdorf A, Shaw J, Karpowicz SJ, Gallaher SD, Johnson S, Benning C, Pellegrini M, Grossman A, Merchant SS (2012) Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas. J Biol Chem 287(19):15811–15825. doi: 10.1074/jbc.M111.334052 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB et al (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240(4858):1534–1538PubMedCrossRefGoogle Scholar
  5. Brunke KJ, Anthony JG, Sternberg EJ, Weeks DP (1984) Repeated consensus sequence and pseudopromoters in the four coordinately regulated tubulin genes of Chlamydomonas reinhardi. Mol Cell Biol 4(6):1115–1124PubMedPubMedCentralCrossRefGoogle Scholar
  6. Cagnon C, Mirabella B, Nguyen HM, Beyly-Adriano A, Bouvet S, Cuine S, Beisson F, Peltier G, Li-Beisson Y (2013) Development of a forward genetic screen to isolate oil mutants in the green microalga Chlamydomonas reinhardtii. Biotechnol Biofuels 6(1):178. doi: 10.1186/1754-6834-6-178 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Chen W, Sommerfeld M, Hu Q (2011) Microwave-assisted nile red method for in vivo quantification of neutral lipids in microalgae. Bioresour Technol 102(1):135–141. doi: 10.1016/j.biortech.2010.06.076 PubMedCrossRefGoogle Scholar
  8. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306. doi: 10.1016/j.biotechadv.2007.02.001 PubMedCrossRefGoogle Scholar
  9. Cirulis JT, Strasser BC, Scott JA, Ross GM (2012) Optimization of staining conditions for microalgae with three lipophilic dyes to reduce precipitation and fluorescence variability. Cytometry A 81:618–626Google Scholar
  10. Danielewicz MA, Anderson LA, Franz AK (2011) Triacylglycerol profiling of marine microalgae by mass spectrometry. J Lipid Res 52(11):2101–2108. doi: 10.1194/jlr.D018408 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Debuchy R, Purton S, Rochaix JD (1989) The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 8(10):2803–2809PubMedPubMedCentralGoogle Scholar
  12. Dent RM, Haglund CM, Chin BL, Kobayashi MC, Niyogi KK (2005) Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii. Plant Physiol 137(2):545–556. doi: 10.1104/pp. 104.055244 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Doan TY, Obbard JP (2011) Improved Nile Red staining of Nannochloropsis sp. J Appl Phycol 23(5):895–901. doi: 10.1007/s10811-010-9608-5 CrossRefGoogle Scholar
  14. Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54(4):593–607. doi: 10.1111/j.1365-313X.2008.03442.x PubMedCrossRefGoogle Scholar
  15. Fan J, Andre C, Xu C (2011) A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Lett 585(12):1985–1991. doi: 10.1016/j.febslet.2011.05.018 PubMedCrossRefGoogle Scholar
  16. Farese RV Jr, Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139(5):855–860. doi: 10.1016/j.cell.2009.11.005 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Ferris PJ (1995) Localization of the nic-7, ac-29 and thi-10 genes within the mating-type locus of Chlamydomonas reinhardtii. Genetics 141(2):543–549PubMedPubMedCentralGoogle Scholar
  18. Fischer N, Rochaix JD (2001) The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mol Genet Genomics 265(5):888–894PubMedCrossRefGoogle Scholar
  19. Gonzalez-Ballester D, de Montaigu A, Galvan A, Fernandez E (2005a) Restriction enzyme site-directed amplification PCR: a tool to identify regions flanking a marker DNA. Anal Biochem 340(2):330–335. doi: 10.1016/j.ab.2005.01.031 PubMedCrossRefGoogle Scholar
  20. González-Ballester D, de Montaigu A, Higuera JJ, Galván A, Fernández E (2005b) Functional genomics of the regulation of the nitrate assimilation pathway in Chlamydomonas. Plant Physiol 137:522–533. doi: 10.1104/pp.104.050914
  21. Goodenough U, Blaby I, Casero D, Gallaher SD, Goodson C, Johnson S, Lee JH, Merchant SS, Pellegrini M, Roth R, Rusch J, Singh M, Umen JG, Weiss TL, Wulan T (2014) The path to triacylglyceride obesity in the sta6 strain of Chlamydomonas reinhardtii. Eukaryot Cell 13(5):591–613. doi: 10.1128/EC.00013-14 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Goodson C, Roth R, Wang ZT, Goodenough U (2011) Structural correlates of cytoplasmic and chloroplast lipid body synthesis in Chlamydomonas reinhardtii and stimulation of lipid body production with acetate boost. Eukaryot Cell 10(12):1592–1606. doi: 10.1128/EC.05242-11 PubMedPubMedCentralCrossRefGoogle Scholar
  23. Govender T, Ramanna L, Rawat I, Bux F (2012) BODIPY staining, an alternative to the Nile Red fluorescence method for the evaluation of intracellular lipids in microalgae. Bioresour Technol 114:507–511. doi: 10.1016/j.biortech.2012.03.024 PubMedCrossRefGoogle Scholar
  24. Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K, Wong JS, Vale RD, Walter P, Farese RV (2008) Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453(7195):657–661. doi: 10.1038/nature06928 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Harris EH, Stern DB, Witman GB (2009) The Chlamydomonas sourcebook. Academic Press, OxfordGoogle Scholar
  26. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639. doi: 10.1111/j.1365-313X.2008.03492.x PubMedCrossRefGoogle Scholar
  27. Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129(2):440–450. doi: 10.1104/pp. 003533 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Ji Y, He Y, Cui Y, Wang T, Wang Y, Li Y, Huang WE, Xu J (2014) Raman spectroscopy provides a rapid, non-invasive method for quantitation of starch in live, unicellular microalgae. Biotechnol J 9(12):1512–1518. doi: 10.1002/biot.201400165 PubMedCrossRefGoogle Scholar
  29. Kind T, Meissen JK, Yang D, Nocito F, Vaniya A, Cheng YS, Vandergheynst JS, Fiehn O (2012) Qualitative analysis of algal secretions with multiple mass spectrometric platforms. J Chromatogr A 1244:139–147. doi: 10.1016/j.chroma.2012.04.074 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 87(3):1228–1232PubMedPubMedCentralCrossRefGoogle Scholar
  31. Kindle KL, Schnell RA, Fernandez E, Lefebvre PA (1989) Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 109(6 Pt 1):2589–2601PubMedCrossRefGoogle Scholar
  32. Kovar JL, Zhang J, Funke RP, Weeks DP (2002) Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. Plant J 29(1):109–117PubMedCrossRefGoogle Scholar
  33. Kozminski KG, Diener DR, Rosenbaum JL (1993) High level expression of nonacetylatable alpha-tubulin in Chlamydomonas reinhardtii. Cell Motil Cytoskeleton 25(2):158–170. doi: 10.1002/cm.970250205 PubMedCrossRefGoogle Scholar
  34. Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11(12):2283–2290PubMedPubMedCentralCrossRefGoogle Scholar
  35. Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga—Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166(3):731–738. doi: 10.1111/pbi.12190 CrossRefGoogle Scholar
  36. Lee B, Choi GG, Choi YE, Sung M, Park MS, Yang JW (2014) Enhancement of lipid productivity by ethyl methane sulfonate-mediated random mutagenesis and proteomic analysis in Chlamydomonas reinhardtii. Korean J Chem Eng 31(6):1036–1042. doi: 10.1007/s11814-014-0007-5 CrossRefGoogle Scholar
  37. Li M, Xu J, Romero-Gonzalez M, Banwart SA, Huang WE (2012a) Single cell Raman spectroscopy for cell sorting and imaging. Curr Opin Biotechnol 23(1):56–63. doi: 10.1016/j.copbio.2011.11.019 PubMedCrossRefGoogle Scholar
  38. Li X, Benning C, Kuo MH (2012b) Rapid triacylglycerol turnover in Chlamydomonas reinhardtii requires a lipase with broad substrate specificity. Eukaryot Cell 11(12):1451–1462. doi: 10.1128/EC.00268-12 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Li X, Moellering ER, Liu B, Johnny C, Fedewa M, Sears BB, Kuo MH, Benning C (2012c) A galactoglycerolipid lipase is required for triacylglycerol accumulation and survival following nitrogen deprivation in Chlamydomonas reinhardtii. Plant Cell 24(11):4670–4686. doi: 10.1105/tpc.112.105106 PubMedPubMedCentralCrossRefGoogle Scholar
  40. Li X, Umen JG, Jonikas MC (2014) Waking sleeping algal cells. Proc Natl Acad Sci U S A 111(44):15610–15611. doi: 10.1073/pnas.1418295111 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Liu B, Vieler A, Li C, Jones AD, Benning C (2013) Triacylglycerol profiling of microalgae Chlamydomonas reinhardtii and Nannochloropsis oceanica. Bioresour Technol 146:310–316. doi: 10.1016/j.biortech.2013.07.088 PubMedCrossRefGoogle Scholar
  42. Lumbreras V, Purton S (1998) Recent advances in chlamydomonas transgenics. Protist 149(1):23–27. doi: 10.1016/S1434-4610(98)70006-9 PubMedCrossRefGoogle Scholar
  43. MacDougall KM, McNichol J, McGinn PJ, O’Leary SJ, Melanson JE (2011) Triacylglycerol profiling of microalgae strains for biofuel feedstock by liquid chromatography-high-resolution mass spectrometry. Anal Bioanal Chem 401(8):2609–2616. doi: 10.1007/s00216-011-5376-6 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Matsuo T, Okamoto K, Onai K, Niwa Y, Shimogawara K, Ishiura M (2008) A systematic forward genetic analysis identified components of the Chlamydomonas circadian system. Genes Dev 22(7):918–930. doi: 10.1101/gad.1650408 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Maul JE, Lilly JW, Cui L, dePamphilis CW, Miller W, Harris EH, Stern DB (2002) The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14(11):2659–2679PubMedPubMedCentralCrossRefGoogle Scholar
  46. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren QH, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meir I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan JM, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang PF, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo YG, Martinez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou KM, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318(5848):245–251. doi: 10.1126/science.1143609 PubMedPubMedCentralCrossRefGoogle Scholar
  47. Meslet-Cladiere L, Vallon O (2012) A new method to identify flanking sequence tags in chlamydomonas using 3′-RACE. Plant Methods 8(1):21. doi: 10.1186/1746-4811-8-21 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Miller R, Wu G, Deshpande RR, Vieler A, Gartner K, Li X, Moellering ER, Zauner S, Cornish AJ, Liu B, Bullard B, Sears BB, Kuo MH, Hegg EL, Shachar-Hill Y, Shiu SH, Benning C (2010) Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol 154(4):1737–1752. doi: 10.1104/pp. 110.165159 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Moellering ER, Benning C (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell 9(1):97–106. doi: 10.1128/EC.00203-09 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Nelson JA, Savereide PB, Lefebvre PA (1994) The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation. Mol Cell Biol 14(6):4011–4019PubMedPubMedCentralCrossRefGoogle Scholar
  51. Nguyen HM, Baudet M, Cuine S, Adriano JM, Barthe D, Billon E, Bruley C, Beisson F, Peltier G, Ferro M, Li-Beisson Y (2011) Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11(21):4266–4273. doi: 10.1002/pmic.201100114 PubMedCrossRefGoogle Scholar
  52. Nguyen HM, Cuine S, Beyly-Adriano A, Legeret B, Billon E, Auroy P, Beisson F, Peltier G, Li-Beisson Y (2013) The green microalga Chlamydomonas reinhardtii has a single omega-3 fatty acid desaturase that localizes to the chloroplast and impacts both plastidic and extraplastidic membrane lipids. Plant Physiol 163(2):914–928. doi: 10.1104/pp. 113.223941 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Pflaster EL, Schwabe MJ, Becker J, Wilkinson MS, Parmer A, Clemente TE, Cahoon EB, Riekhof WR (2014) A high-throughput fatty acid profiling screen reveals novel variations in fatty acid biosynthesis in Chlamydomonas reinhardtii and related algae. Eukaryot Cell 13(11):1431–1438. doi: 10.1128/EC.00128-14 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Randolph-Anderson BL, Boynton JE, Gillham NW, Harris EH, Johnson AM, Dorthu MP, Matagne RF (1993) Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation. Mol Gen Genet 236(2–3):235–244PubMedCrossRefGoogle Scholar
  55. Rasala BA, Chao SS, Pier M, Barrera DJ, Mayfield SP (2014) Enhanced genetic tools for engineering multigene traits into green algae. PLoS One 9(4):e94028. doi: 10.1371/journal.pone.0094028 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Riekhof WR, Sears BB, Benning C (2005) Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: discovery of the betaine lipid synthase BTA1Cr. Eukaryot Cell 4(2):242–252. doi: 10.1128/EC.4.2.242-252.2005 PubMedPubMedCentralCrossRefGoogle Scholar
  57. Rymarquis LA, Handley JM, Thomas M, Stern DB (2005) Beyond complementation. Map-based cloning in Chlamydomonas reinhardtii. Plant Physiol 137(2):557–566. doi: 10.1104/pp. 104.054221 PubMedPubMedCentralCrossRefGoogle Scholar
  58. Schmollinger S, Muhlhaus T, Boyle NR, Blaby IK, Casero D, Mettler T, Moseley JL, Kropat J, Sommer F, Strenkert D, Hemme D, Pellegrini M, Grossman AR, Stitt M, Schroda M, Merchant SS (2014) Nitrogen-sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell 26(4):1410–1435. doi: 10.1105/tpc.113.122523 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Schroda M, Blocker D, Beck CF (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 21(2):121–131PubMedCrossRefGoogle Scholar
  60. Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148(4):1821–1828PubMedPubMedCentralGoogle Scholar
  61. Sizova I, Fuhrmann M, Hegemann P (2001) A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277(1–2):221–229PubMedCrossRefGoogle Scholar
  62. Spandl J, White DJ, Peychl J, Thiele C (2009) Live cell multicolor imaging of lipid droplets with a new dye, LD540. Traffic 10(11):1579–1584. doi: 10.1111/j.1600-0854.2009.00980.x PubMedCrossRefGoogle Scholar
  63. Stevens DR, Rochaix JD, Purton S (1996) The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol Gen Genet 251(1):23–30PubMedGoogle Scholar
  64. Tam LW, Lefebvre PA (1993) Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics 135(2):375–384PubMedPubMedCentralGoogle Scholar
  65. Terashima M, Freeman ES, Jinkerson RE, Jonikas MC (2014) A fluorescence-activated cell sorting-based strategy for rapid isolation of high-lipid Chlamydomonas mutants. Plant J. doi: 10.1111/tpj.12682 PubMedPubMedCentralGoogle Scholar
  66. Thiele C (2011) Fluorescence-based imaging and analysis of cells and cellular components using lipophilic dyes with improved specificity, spectral property and photostability. EP20090010408Google Scholar
  67. To A, Joubes J, Barthole G, Lecureuil A, Scagnelli A, Jasinski S, Lepiniec L, Baud S (2012) WRINKLED transcription factors orchestrate tissue-specific regulation of fatty acid biosynthesis in Arabidopsis. Plant Cell 24(12):5007–5023. doi: 10.1105/tpc.112.106120 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Tsai CH, Warakanont J, Takeuchi T, Sears BB, Moellering ER, Benning C (2014) The protein Compromised Hydrolysis of Triacylglycerols 7 (CHT7) acts as a repressor of cellular quiescence in Chlamydomonas. Proc Natl Acad Sci U S A 111(44):15833–15838. doi: 10.1073/pnas.1414567111 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Tulin F, Cross FR (2014) A microbial avenue to cell cycle control in the plant superkingdom. Plant Cell 26(10):4019–4038. doi: 10.1105/tpc.114.129312 PubMedPubMedCentralCrossRefGoogle Scholar
  70. Vieler A, Wilhelm C, Goss R, Suss R, Schiller J (2007) The lipid composition of the unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana investigated by MALDI-TOF MS and TLC. Chem Phys Lipids 150(2):143–155. doi: 10.1016/j.chemphyslip.2007.06.224 PubMedCrossRefGoogle Scholar
  71. Wang YH (2008) How effective is T-DNA insertional mutagenesis in Arabidopsis? J Biochem Tech 1(1):11–20. doi: 10.1111/pbi.12190 Google Scholar
  72. Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8(12):1856–1868. doi: 10.1128/EC.00272-09 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Wang Y, Ji Y, Wharfe ES, Meadows RS, March P, Goodacre R, Xu J, Huang WE (2013) Raman activated cell ejection for isolation of single cells. Anal Chem 85(22):10697–10701. doi: 10.1021/ac403107p PubMedCrossRefGoogle Scholar
  74. Wang T, Ji Y, Wang Y, Jia J, Li J, Huang S, Han D, Hu Q, Huang WE, Xu J (2014) Quantitative dynamics of triacylglycerol accumulation in microalgae populations at single-cell resolution revealed by Raman microspectroscopy. Biotechnol Biofuels 7:58. doi: 10.1186/1754-6834-7-58 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A, Cheng JX, Graham M, Christiano R, Frohlich F, Liu X, Buhman KK, Coleman RA, Bewersdorf J, Farese RV Jr, Walther TC (2013) Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 24(4):384–399. doi: 10.1016/j.devcel.2013.01.013 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LM, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9(8):1251–1261. doi: 10.1128/EC.00075-10 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Wu H, Volponi JV, Oliver AE, Parikh AN, Simmons BA, Singh S (2011) In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci U S A 108(9):3809–3814. doi: 10.1073/pnas.1009043108 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Xie B, Stessman D, Hart JH, Dong H, Wang Y, Wright DA, Nikolau BJ, Spalding MH, Halverson LJ (2014) High-throughput fluorescence-activated cell sorting for lipid hyperaccumulating Chlamydomonas reinhardtii mutants. Plant Biotechnol J 12(7):872–882. doi: 10.1111/pbi.12190 PubMedCrossRefGoogle Scholar
  79. Xu C, Fan J, Riekhof W, Froehlich JE, Benning C (2003) A permease-like protein involved in ER to thylakoid lipid transfer in Arabidopsis. EMBO J 22(10):2370–2379. doi: 10.1093/emboj/cdg234 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Yan C, Fan J, Xu C (2013) Analysis of oil droplets in microalgae. Methods Cell Biol 116:71–82. doi: 10.1016/B978-0-12-408051-5.00005-X PubMedCrossRefGoogle Scholar
  81. Yoon K, Han D, Li Y, Sommerfeld M, Hu Q (2012) Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. Plant Cell 24(9):3708–3724. doi: 10.1105/tpc.112.100701 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Zhang Q, Zhang P, Su Y, Mou C, Zhou T, Yang M, Xu J, Ma B (2014a) On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction. Lab Chip 14(24):4599–4603. doi: 10.1039/c4lc00833b PubMedCrossRefGoogle Scholar
  83. Zhang R, Patena W, Armbruster U, Gang SS, Blum SR, Jonikas MC (2014b) High-throughput genotyping of green algal mutants reveals random distribution of mutagenic insertion sites and endonucleolytic cleavage of transforming DNA. Plant Cell 26(4):1398–1409. doi: 10.1105/tpc.114.124099 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Zhang P, Ren L, Zhang X, Shan Y, Wang Y, Ji Y, Yin H, Huang WE, Xu J, Ma B (2015) Raman-activated cell sorting based on dielectrophoretic single-cell trap and release. Anal Chem. doi: 10.1021/ac503974e Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Plant BiologyCarnegie Institution for ScienceStanfordUSA

Personalised recommendations