Advertisement

Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications

  • Yonghua Li-Beisson
  • Yuki Nakamura
  • John Harwood
Part of the Subcellular Biochemistry book series (SCBI, volume 86)

Abstract

Lipids are one of the major subcellular components, and play numerous essential functions. As well as their physiological roles, oils stored in biomass are useful commodities for a variety of biotechnological applications including food, chemical feedstocks, and fuel. Due to their agronomic as well as economic and societal importance, lipids have historically been subjected to intensive studies. Major current efforts are to increase the energy density of cell biomass, and/or create designer oils suitable for specific applications. This chapter covers some basic aspects of what one needs to know about lipids: definition, structure, function, metabolism and focus is also given on the development of modern lipid analytical tools and major current engineering approaches for biotechnological applications. This introductory chapter is intended to serve as a primer for all subsequent chapters in this book outlining current development in specific areas of lipids and their metabolism.

Keywords

Fatty acids Lipid biotechnology Lipid metabolism Lipid analysis Algae Plants 

References

  1. Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22(3):245–279. doi: 10.1080/07388550290789513 CrossRefPubMedGoogle Scholar
  2. Bao XM, Pollard M, Ohlrogge J (1998) The biosynthesis of erucic acid in developing embryos of Brassica rapa. Plant Physiol 118(1):183–190. doi: 10.1104/pp. 118.1.183 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bao X, Katz S, Pollard M, Ohlrogge J (2002) Carbocyclic fatty acids in plants: biochemical and molecular genetic characterization of cyclopropane fatty acid synthesis of Sterculia foetida. Proc Natl Acad Sci 99(10):7172–7177. doi: 10.1073/pnas.092152999 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boss WF, Im YJ (2012) Phosphoinositide signaling. Annu Rev Plant Biol 63(1):409–429. doi: 10.1146/annurev-arplant-042110-103840 CrossRefPubMedGoogle Scholar
  5. Cagnon C, Mirabella B, Nguyen HM, Beyly-Adriano A, Bouvet S, Cuine S, Beisson F, Peltier G, Li-Beisson Y (2013) Development of a forward genetic screen to isolate oil mutants in the green microalga Chlamydomonas reinhardtii. Biotechnol Biofuels 6(1):178CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carlsson AS, Yilmaz JL, Green AG, Stymne S, Hofvander P (2011) Replacing fossil oil with fresh oil – with what and for what? Eur J Lipid Sci Technol 113(7):812–831. doi: 10.1002/ejlt.201100032 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Christie WW (2013) A lipid primer. http://lipidlibrary.aocs.org/lipids.html
  8. Christie WW, Dijkstra AJ, Knothe G (2007) Analysis. In: The lipid handbook with CD-ROM, 3rd edn. CRC Press, Boca Raton, Florida, USA, pp 415–469. doi: 10.1201/9781420009675.ch6
  9. Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297. doi: 10.1146/annurev.arplant.53.100301.135248 CrossRefPubMedGoogle Scholar
  10. Gunstone FD, Harwood JL, Dijkstra AJ (2007) The lipid handbook with CD-ROM. CRC Press, Boca RatonGoogle Scholar
  11. Gurr MI, Harwood JL, Frayn KN (2002) Lipid biochemistry. Wiley, MaldenCrossRefGoogle Scholar
  12. Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45(2):160–186. doi: 10.1016/j.plipres.2006.01.001 CrossRefPubMedGoogle Scholar
  13. Guschina IA, Harwood JL (2013) Algal lipids and their metabolism. Algae Biofuels Energy 17:201–214Google Scholar
  14. Harwood JL (1980) 1 – plant acyl lipids: structure, distribution, and analysis. In: Stumpf PK (ed) Lipids: structure and function. Academic, New York, pp 1–55. doi:http://dx.doi.org/10.1016/B978-0-12-675404-9.50007-2 CrossRefGoogle Scholar
  15. Harwood JL, Gunstone FD (2007) Occurrence and characterisation of oils and fats. In: The lipid handbook with CD-ROM, 3rd edn. CRC Press, Boca Raton, pp 37–141. doi:  10.1201/9781420009675.ch2
  16. Harwood JL, Guschina IA (2009) The versatility of algae and their lipid metabolism. Biochimie 91(6):679–684. doi: 10.1016/j.biochi.2008.11.004 CrossRefPubMedGoogle Scholar
  17. Harwood JL, Jones AL (1989) Lipid metabolism in algae. In: Callow JA (ed) Advances in botanical research, vol 16. Academic, London, pp 1–53. doi:http://dx.doi.org/10.1016/S0065-2296(08)60238-4 Google Scholar
  18. Harwood JL, Scrimgeour CM (2007) Fatty acid and lipid structure. In: The lipid handbook with CD-ROM, 3rd edn. CRC Press, Boca Raton, pp 1–36. doi: 10.1201/9781420009675.ch1
  19. Horn PJ, Chapman KD (2014) Lipidomics in situ: insights into plant lipid metabolism from high resolution spatial maps of metabolites. Prog Lipid Res 54(0):32–52. doi:http://dx.doi.org/10.1016/j.plipres.2014.01.003 CrossRefPubMedGoogle Scholar
  20. Horn PJ, Korte AR, Neogi PB, Love E, Fuchs J, Strupat K, Borisjuk L, Shulaev V, Lee YJ, Chapman KD (2012) Spatial mapping of lipids at cellular resolution in embryos of cotton. Plant Cell 24(2):622–636. doi: 10.1105/tpc.111.094581 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639CrossRefPubMedGoogle Scholar
  22. Jaworski J, Cahoon EB (2003) Industrial oils from transgenic plants. Curr Opin Plant Biol 6(2):178–184CrossRefPubMedGoogle Scholar
  23. Kaczmarzyk D, Fulda M (2010) Fatty acid activation in cyanobacteria mediated by acyl-acyl carrier protein synthetase enables fatty acid recycling. Plant Physiol 152(3):1598–1610. doi: 10.1104/pp. 109.148007 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kennedy EP (1956) The biological synthesis of phospholipids. Can J Biochem Physiol 34(2):334–348CrossRefPubMedGoogle Scholar
  25. Kolattukudy PE (2001) Polyesters in higher plants. In: Babel W, Steinbuschel A (eds) Advances in biochemical engineering/biotechnology, vol 71, Biopolyesters. Springer, Berlin, pp 1–49Google Scholar
  26. Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12(6):721–727. doi: 10.1016/j.pbi.2009.09.009 CrossRefPubMedGoogle Scholar
  27. Li YH, Beisson F (2009) The biosynthesis of cutin and suberin as an alternative source of enzymes for the production of bio-based chemicals and materials. Biochimie 91(6):685–691. doi: 10.1016/j.biochi.2009.03.016 CrossRefPubMedGoogle Scholar
  28. Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, Bates PD, Baud S, Bird D, DeBono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, Zallot R, Ohlrogge J (2013) Acyl-lipid metabolism. Arabidopsis Book 11:e0161. doi: 10.1199/tab.0161 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Li-Beisson Y, Beisson F, Riekhof W (2015) Metabolism of acyl-lipids in Chlamydomonas reinhardtii. Plant J 82(3):504–522. doi: 10.1111/tpj.12787 CrossRefPubMedGoogle Scholar
  30. Lin M, Behal R, Oliver DJ (2003) Disruption of plE2, the gene for the E2 subunit of the plastid pyruvate dehydrogenase complex, in Arabidopsis causes an early embryo lethal phenotype. Plant Mol Biol 52(4):865–872. doi: 10.1023/a:1025076805902 CrossRefPubMedGoogle Scholar
  31. Liu B, Benning C (2013) Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol 24(2):300–309. doi:http://dx.doi.org/10.1016/j.copbio.2012.08.008 CrossRefPubMedGoogle Scholar
  32. Liu B, Vieler A, Li C, Daniel Jones A, Benning C (2013) Triacylglycerol profiling of microalgae Chlamydomonas reinhardtii and Nannochloropsis oceanica. Bioresour Technol 146(0):310–316. doi:http://dx.doi.org/10.1016/j.biortech.2013.07.088 CrossRefPubMedGoogle Scholar
  33. Lu CF, Napier JA, Clemente TE, Cahoon EB (2011) New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr Opin Biotechnol 22(2):252–259. doi: 10.1016/j.copbio.2010.11.006 CrossRefPubMedGoogle Scholar
  34. Mizusawa N, Wada H (2012) The role of lipids in photosystem II. Biochim Biophys Acta-Bioenerg 1817(1):194–208. doi: 10.1016/j.bbabio.2011.04.008 CrossRefGoogle Scholar
  35. Murphy DJ (2005) Plant lipids: biology, utilisation, and manipulation, Biological Sciences Series. Wiley, OxfordGoogle Scholar
  36. Napier JA, Graham IA (2010) Tailoring plant lipid composition: designer oilseeds come of age. Curr Opin Plant Biol 13(3):330–337. doi: 10.1016/j.pbi.2010.01.008 CrossRefPubMedGoogle Scholar
  37. Nguyen HM, Cuiné S, Beyly-Adriano A, Légeret B, Billon E, Auroy P, Beisson F, Peltier G, Li-Beisson Y (2013) The green microalga Chlamydomonas reinhardtii has a single ω-3 fatty acid desaturase that localizes to the chloroplast and impacts both plastidic and extraplastidic membrane lipids. Plant Physiol 163(2):914–928. doi: 10.1104/pp. 113.223941 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pohl P, Zurheide F (1979) Fatty acids and lipids of marine algae and the control of their biosynthesis by environmental factors. In: Hoppe HA, Tore L, Yukio T (eds) Marine algae in pharmaceutical science. W. de Gruyter, BerlinGoogle Scholar
  39. Pollard M, Beisson F, Li YH, Ohlrogge JB (2008) Building lipid barriers: biosynthesis of cutin and suberin. Trends Plant Sci 13(5):236–246. doi: 10.1016/j.tplants.2008.03.003 CrossRefPubMedGoogle Scholar
  40. Ratledge C, Cohen Z (2010) Single cell oils: microbial and algal oils. AOCS Press, UrbanaGoogle Scholar
  41. Schwender J, Ohlrogge JB, Shachar-Hill Y (2003) A flux model of glycolysis and the oxidative pentosephosphate pathway in developing Brassica napus embryos. J Biol Chem 278(32):29442–29453. doi: 10.1074/jbc.M303432200 CrossRefPubMedGoogle Scholar
  42. Vanhercke T, Tahchy AE, Shrestha P, Zhou X-R, Singh SP, Petrie JR (2013) Synergistic effect of WRI1 and DGAT1 coexpression on triacylglycerol biosynthesis in plants. FEBS Lett 4:364. doi: 10.1016/j.febslet.2012.12.018 CrossRefGoogle Scholar
  43. Welti R, Li WQ, Li MY, Sang YM, Biesiada H, Zhou HE, Rajashekar CB, Williams TD, Wang XM (2002) Profiling membrane lipids in plant stress responses – role of phospholipase D alpha in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277(35):31994–32002. doi: 10.1074/jbc.M205375200 CrossRefPubMedGoogle Scholar
  44. Welti R, Shah J, Li WQ, Li MY, Chen JP, Burke JJ, Fauconnier ML, Chapman K, Chye ML, Wang XM (2007) Plant lipidomics: discerning biological function by profiling plant complex lipids using mass spectrometry. Front Biosci 12:2494–2506. doi: 10.2741/2250 CrossRefPubMedGoogle Scholar
  45. Xie B, Stessman D, Hart JH, Dong H, Wang Y, Wright DA, Nikolau BJ, Spalding MH, Halverson LJ (2014) High-throughput fluorescence-activated cell sorting for lipid hyperaccumulating Chlamydomonas reinhardtii mutants. Plant Biotechnol J 12:872–882CrossRefPubMedGoogle Scholar
  46. Yamaoka Y, Yu Y, Mizoi J, Fujiki Y, Saito K, Nishijima M, Lee Y, Nishida I (2011) Phosphatidylserine synthase1 is required for microspore development in Arabidopsis thaliana. Plant J Cell Mol Biol 67(4):648–661. doi: 10.1111/j.1365-313X.2011.04624.x CrossRefGoogle Scholar
  47. Yoon K, Han D, Li Y, Sommerfeld M, Hu Q (2012) Phospholipid:diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. Plant Cell 24(9):3708–3724. doi: 10.1105/tpc.112.100701 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zhang M, Fan J, Taylor DC, Ohlrogge JB (2009) DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. Plant Cell 21(12):3885–3901. doi: 10.1105/tpc.109.071795 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Yonghua Li-Beisson
    • 1
  • Yuki Nakamura
    • 2
  • John Harwood
    • 3
  1. 1.Institut de Biologie Environnementale et BiotechnologieUMR 7265 CEA - CNRS - Université Aix Marseille, CEA CadaracheSaint-Paul-lez-DuranceFrance
  2. 2.Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
  3. 3.School of BiosciencesCardiff UniversityCardiffUK

Personalised recommendations