An Application of Temporal Projection to Interleaving Concurrency

  • Ben Moszkowski
  • Dimitar P. Guelev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9409)


We revisit the earliest temporal projection operator \(\mathrm \Pi \) in discrete-time Propositional Interval Temporal Logic (PITL) and use it to formalise interleaving concurrency. The logical properties of \(\mathrm{\Pi }\) as a normal modality and a way to eliminate it in both PITL and conventional point-based Linear-Time Temporal Logic (LTL), which can be viewed as a PITL subset, are examined. We also formalise concurrency without \(\mathrm{\Pi }\), and relate the two approaches. Furthermore, \(\mathrm{\Pi }\) and another standard PITL projection operator are interdefinable and both suitable for reasoning about different time granularities. We mention other (mostly interval-based) temporal logics with similar forms of projection, as well as some related applications and international standards.


Interleaving concurrency Interval temporal logic Temporal projection Time granularities 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baier, C., Katoen, J.: Principles of Model Checking. MIT Press (2008)Google Scholar
  2. 2.
    Bäumler, S., Balser, M., Nafz, F., Reif, W., Schellhorn, G.: Interactive verification of concurrent systems using symbolic execution. AI Commun. 23(2–3), 285–307 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bäumler, S., Schellhorn, G., Tofan, B., Reif, W.: Proving linearizability with temporal logic. Formal Aspects of Computing 23(1), 91–112 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ben-Ari, M.: Principles of Concurrent and Distributed Programming. Addison-Wesley, second edn. (2006)Google Scholar
  5. 5.
    Cerny, E., Dudani, S., Havlicek, J., Korchemny, D.: SVA: The Power of Assertions in SystemVerilog, 2nd edn. Springer, Heidelberg (2015)Google Scholar
  6. 6.
    Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)CrossRefzbMATHGoogle Scholar
  7. 7.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  8. 8.
    Dang, V.H.: Projections: A technique for verifying real-time programs in DC. Tech. Rep. 178, UNU/IIST, Macau (1999). In: Proc. Conf. on Information Technology and Education, Ho Chi Minh City, Vietnam, January 2000Google Scholar
  9. 9.
    Duan, Z.: An Extended Interval Temporal Logic and a Framing Technique for Temporal Logic Programming. Ph.D. thesis, Dept. Comp. Sci., tech. rep. 556, Newcastle University, UK (1996).
  10. 10.
    Duan, Z., Koutny, M., Holt, C.: Projection in temporal logic programming. In: Pfenning, F. (ed.) LPAR 1994. LNCS, vol. 822, pp. 333–344. Springer, Heidelberg (1994) CrossRefGoogle Scholar
  11. 11.
    Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Science of Computer Programming 70(1), 31–61 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Eisner, C., Fisman, D.: A Practical Introduction to PSL. Springer, Heidelberg (2006)Google Scholar
  13. 13.
    Eisner, C., Fisman, D.: Temporal logic made practical. In: Clarke, E.M., Henzinger, T.A., Veith, H. (eds.) Handbook of Model Checking. Springer (Expected 2016).
  14. 14.
    Eisner, C., Fisman, D., Havlicek, J., McIsaac, A., Van Campenhout, D.: The definition of a temporal clock operator. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 857–870. Springer, Heidelberg (2003) CrossRefGoogle Scholar
  15. 15.
    Guelev, D.P.: A complete proof system for first-order interval temporal logic with projection. J. Log. Comput. 14(2), 215–249 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Guelev, D.P.: Logical interpolation and projection onto state in the Duration Calculus. J. Applied Non-Classical Logics 14(1–2), 181–208 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Guelev, D.P., Dang, V.H.: Prefix and projection onto state in duration calculus. Electr. Notes Theor. Comput. Sci. 65(6), 101–119 (2002)CrossRefzbMATHGoogle Scholar
  18. 18.
    Guelev, D.P., Dang, V.H.: A relatively complete axiomatisation of projection onto state in the Duration Calculus. J. Applied Non-Classical Logics 14(1–2), 149–180 (2004)CrossRefzbMATHGoogle Scholar
  19. 19.
    Halpern, J., Manna, Z., Moszkowski, B.: A hardware semantics based on temporal intervals. In: Diaz, J. (ed.) ICALP 1983. LNCS, vol. 154, pp. 278–291. Springer, Heidelberg (1983)Google Scholar
  20. 20.
    He, J.: A behavioral model for co-design. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1709, pp. 1420–1438. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  21. 21.
    Hollander, Y., Morley, M., Noy, A.: The e language: a fresh separation of concerns. In: Proc. TOOLS Europe 2001: 38th Int’l Conf. on Technology of Object-Oriented Languages and Systems, Components for Mobile Computing, pp. 41–50. IEEE Computer Society Press (2001)Google Scholar
  22. 22.
    Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley Professional (2003)Google Scholar
  23. 23.
    Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge, London (1996) CrossRefzbMATHGoogle Scholar
  24. 24.
    IEEE: Standard for Property Specification Language (PSL), Standard 1850–2010. ANSI/IEEE, New York (2010)Google Scholar
  25. 25.
    IEEE: Standard for the Functional Verification Language e, Standard 1647–2011. ANSI/IEEE, New York (2011)Google Scholar
  26. 26.
    IEEE: Standard for SystemVerilog-Unified Hardware Design, Specification, and Verification Language, Standard 1800–2012. ANSI/IEEE, New York (2012)Google Scholar
  27. 27.
  28. 28.
    Jones, C.B.: Tentative steps toward a development method for interfering programs. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (1983)CrossRefzbMATHGoogle Scholar
  29. 29.
    Jones, C.B., Hayes, I.J., Colvin, R.J.: Balancing expressiveness in formal approaches to concurrency. Formal Asp. Comput. 27(3), 475–497 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Keller, R.M.: Formal verification of parallel programs. Commun. ACM 19(7), 371–384 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kröger, F., Merz, S.: Temporal Logic and State Systems. Texts in Theoretical Computer Science (An EATCS Series). Springer, Heidelberg (2008)Google Scholar
  32. 32.
    Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers. Addison-Wesley Professional (2002)Google Scholar
  33. 33.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specifications. Springer, New York (1992)CrossRefzbMATHGoogle Scholar
  34. 34.
    Morley, M.J.: Semantics of temporal e. In: Melham, T.F., Moller, F.G. (eds.) Banff’99 Higher Order Workshop: Formal Methods in Computation, Ullapool, Scotland, 9–11 Sept. 1999. pp. 138–142. Univ. Glasgow, Dept. Comp. Sci., tech. rep. (1999)Google Scholar
  35. 35.
    Moszkowski, B.: Reasoning about Digital Circuits. Ph.D. thesis, Department of Computer Science, Stanford University, tech. rep. STAN-CS-83-970 (June 1983)Google Scholar
  36. 36.
    Moszkowski, B.: Executing Temporal Logic Programs. Cambridge University Press, Cambridge (1986) zbMATHGoogle Scholar
  37. 37.
    Moszkowski, B.: Compositional reasoning about projected and infinite time. In: Proc. 1st IEEE Int’l Conf. on Engineering of Complex Computer Systems (ICECCS’95), pp. 238–245. IEEE Computer Society Press (1995)Google Scholar
  38. 38.
    Moszkowski, B.: A hierarchical completeness proof for Propositional Interval Temporal Logic with finite time. J. Applied Non-Classical Logics 14(1–2), 55–104 (2004)CrossRefzbMATHGoogle Scholar
  39. 39.
    Moszkowski, B.: A complete axiom system for propositional Interval Temporal Logic with infinite time. Log. Meth. Comp. Sci. 8(3:10), 1–56 (2012)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.: How Amazon Web Services uses formal methods. Commun. ACM 58(4), 66–73 (2015)CrossRefGoogle Scholar
  41. 41.
    Olderog, E.R., Dierks, H.: Real-Time Systems: Formal Specification and Automatic Verification. Cambridge University Press, Cambridge (2008) CrossRefzbMATHGoogle Scholar
  42. 42.
    Peterson, G.L.: Myths about the mutual exclusion problem. Inf. Process. Lett. 12(3), 115–116 (1981)CrossRefzbMATHGoogle Scholar
  43. 43.
    de Roever, W.P., de Boer, F., Hanneman, U., Hooman, J., Lakhnech, Y., Poel, M., Zwiers, J.: Concurrency Verification: Introduction to Compositional and Noncompositional Methods. Cambridge University Press (2001)Google Scholar
  44. 44.
    Zhou, C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time Systems. Springer, Heidelberg (2004) zbMATHGoogle Scholar
  45. 45.
    Zhou, C., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process. Lett. 40(5), 269–276 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of Computing ScienceNewcastle UniversityNewcastle upon TyneUK
  2. 2.Department of Algebra and LogicInstitute of Mathematics and InformaticsSofiaBulgaria

Personalised recommendations