International Conference on Advanced Concepts for Intelligent Vision Systems

Advanced Concepts for Intelligent Vision Systems pp 70-80

Fast and Low Power Consumption Outliers Removal for Motion Vector Estimation

  • Giuseppe Spampinato
  • Arcangelo Bruna
  • Giovanni Maria Farinella
  • Sebastiano Battiato
  • Giovanni Puglisi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9386)

Abstract

When in a pipeline a robust global motion estimation is needed, RANSAC algorithm is the usual choice. Unfortunately, since RANSAC is an iterative method based on random analysis, it is not suitable for real-time processing. This paper presents an outlier removal algorithm, which reaches a robust estimation (at least equal to RANSAC) with really low power consumption and can be employed for embedded time implementation.

Keywords

Motion estimation Outlier removal Optical flow Motion retrieval Real time 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Battiato, S., Farinella, G.M., Giudice, O., Puglisi, G.: Aligning Shapes for Symbol Classification and Retrieval Multimedia Tools and Applications. Springer (2015)Google Scholar
  2. 2.
    Bosco, A., Bruna, A., Battiato, S., Bella G., Puglisi, G.: Digital Video Stabilization through Curve Warping Techniques. IEEE Transactions on Consumer Electronics (2008)Google Scholar
  3. 3.
    Battiato, S., Bruna, A., Puglisi, G.: A Robust Block Based Image/Video Registration Approach for Mobile Imaging Devices. IEEE Transactions on Multimedia (2010)Google Scholar
  4. 4.
    Puglisi, G., Battiato, S.: A Robust Image Alignment Algorithm for Video Stabilization Purposes. IEEE Transactions on Circuits and Systems for Video Technology (2011)Google Scholar
  5. 5.
    Astola, J., Kuosmanen, P.: Fundamentals of Nonlinear Digital Filtering. CRC Press. Boca Raton, New York (1997)MATHGoogle Scholar
  6. 6.
    Ling, L., Yin, R., Wang, X.: Nonlinear filters for reducing spiky noise: 2-dimensions. In: Proceedings of the IEEE International Conference on Acoustic Speech and Signal Processing (1984)Google Scholar
  7. 7.
    Pearson, R.: Data cleaning for dynamic modeling and control. In: European Control Conference (1999)Google Scholar
  8. 8.
    Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Communications of the ACM 24 (1981)Google Scholar
  9. 9.
    Matas, J., Chum, O.: Randomized RANSAC with Td, d test. Image and Vision Computing (2004)Google Scholar
  10. 10.
    Capel, D.: An effective bail-out test for RANSAC consensus scoring. In: Proceedings of British Machine Vision Conference (2005)Google Scholar
  11. 11.
    Matas, J., Chum, O.: Randomized RANSAC with sequential probability ratio test. In: Proceedings of ICCV (2005)Google Scholar
  12. 12.
    Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 236–243. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Tordoff, B., Murray, D.W.: Guided sampling and consensus for motion estimation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 82–96. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Chum, O., Matas, J.: Matching with PROSAC - progressive sample consensus. In: Proceedings of CVPR (2005)Google Scholar
  15. 15.
    Nister, D.: Preemptive RANSAC for live structure and motion estimation. In: Proceedings of ICCV (2003)Google Scholar
  16. 16.
    Battiato, S., Farinella, G.M., Messina, E., Puglisi, G.: A Robust Forensic Hash Component for Image Alignment. International Conference on Image Analysis and Processing (2011)Google Scholar
  17. 17.
    Chen, H.H., Liang, C., Peng, Y., Chang, H.: Integration of Digital Stabilizer With Video Codec for Digital Video Cameras. IEEE Transaction Circuits System Video Technology (2007)Google Scholar
  18. 18.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision (2004)Google Scholar
  19. 19.
    Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., Fua, P.: Computing a Local Binary Descriptor Very Fast. IEEE Transactions on Pattern Analysis and Machine Intelligence (2012)Google Scholar
  21. 21.
    Spampinato, G., Bruna, A.: A method and device for stabilizing video sequences, related video capture apparatus and computer program product. Patent US20140204227 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Giuseppe Spampinato
    • 1
  • Arcangelo Bruna
    • 1
  • Giovanni Maria Farinella
    • 2
  • Sebastiano Battiato
    • 2
  • Giovanni Puglisi
    • 3
  1. 1.STMicroelectronics, Advanced System TechnologyCataniaItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversità degli Studi di CataniaCataniaItaly
  3. 3.Dipartimento di Matematica e InformaticaUniversità degli Studi di CagliariCagliariItaly

Personalised recommendations