International Conference on Advanced Concepts for Intelligent Vision Systems

Advanced Concepts for Intelligent Vision Systems pp 486-498 | Cite as

A PNU-Based Technique to Detect Forged Regions in Digital Images

  • Giuseppe Cattaneo
  • Umberto Ferraro Petrillo
  • Gianluca Roscigno
  • Carmine De Fusco
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9386)


In this paper we propose a non-blind passive technique for image forgery detection. Our technique is a variant of a method presented in [8] and it is based on the analysis of the Sensor Pattern Noise (SPN). Its main features are the ability to detect small forged regions and to run in an automatic way. Our technique works by extracting the SPN from the image under scrutiny and, then, by correlating it with the reference SPN of a target camera. The two noises are partitioned into non-overlapping blocks before evaluating their correlation. Then, a set of operators is applied on the resulting Correlations Map to highlight forged regions and remove noise spikes. The result is processed using a multi-level segmentation algorithm to determine which blocks should be considered forged. We analyzed the performance of our technique by using a dataset of 4, 000 images.


Digital image forensics Image integrity Image forgery detection Forgery localization Pixel non-uniformity noise 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cattaneo, G., Faruolo, P., Ferraro Petrillo, U.: Experiments on improving sensor pattern noise extraction for source camera identification. In: Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), pp. 609–616. IEEE (2012)Google Scholar
  2. 2.
    Cattaneo, G., Roscigno, G.: A possible pitfall in the experimental analysis of tampering detection algorithms. In: 17th International Conference on Network-Based Information Systems (NBiS), pp. 279–286 (2014)Google Scholar
  3. 3.
    Cattaneo, G., Roscigno, G., Ferraro Petrillo, U.: Experimental evaluation of an algorithm for the detection of tampered JPEG images. In: Linawati, Mahendra, M.S., Neuhold, E.J., Tjoa, A.M., You, I. (eds.) ICT-EurAsia 2014. LNCS, vol. 8407, pp. 643–652. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  4. 4.
    Cattaneo, G., Roscigno, G., Ferraro Petrillo, U.: A scalable approach to source camera identification over Hadoop. In: IEEE 28th International Conference on Advanced Information Networking and Applications (AINA), pp. 366–373. IEEE (2014)Google Scholar
  5. 5.
    Chen, M., Fridrich, J., Lukáš, J., Goljan, M.: Imaging sensor noise as digital X-ray for revealing forgeries. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 342–358. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  6. 6.
    Chen, M., Fridrich, J., Goljan, M., Lukáš, J.: Determining image origin and integrity using sensor noise. IEEE Transactions on Information Forensics and Security 3(1), 74–90 (2008)Google Scholar
  7. 7.
    Chierchia, G., Cozzolino, D., Poggi, G., Sansone, C., Verdoliva, L.: Guided filtering for PRNU-based localization of small-size image forgeries. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2014, pp. 6231–6235. IEEE (2014)Google Scholar
  8. 8.
    Fridrich, J., Goljan, M., Lukáš, J.: Detecting digital image forgeries using sensor pattern noise. SPIE, Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents VIII. 6072, 1–11 (2006)Google Scholar
  9. 9.
    Fridrich, J., Goljan, M., Lukáš, J.: Digital camera identification from sensor pattern noise. IEEE Transactions on Information Forensics and Security 1(2), 205–214 (2006)CrossRefGoogle Scholar
  10. 10.
    Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical morphology. IEEE Transactions on Pattern Analysis and Machine Intelligence 9(4), 532–550 (1987)CrossRefGoogle Scholar
  11. 11.
    Lin, Z., He, J., Tang, X., Tang, C.K.: Fast, automatic and fine-grained tampered JPEG image detection via DCT coefficient analysis. Pattern Recognition 42(11), 2492–2501 (2009)MATHCrossRefGoogle Scholar
  12. 12.
    Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11(285–296), 23–27 (1975)Google Scholar
  13. 13.
    Redi, J.A., Taktak, W., Dugelay, J.L.: Digital image forensics: a booklet for beginners. Multimedia Tools and Applications 51(1), 133–162 (2011)CrossRefGoogle Scholar
  14. 14.
    Sokolova, M.V., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, F-Score and ROC: A family of discriminant measures for performance evaluation. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1015–1021. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  15. 15.
    Yadav, P., Yadav, A.: Digital Image Processing. University Science Press, New Delhi (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Giuseppe Cattaneo
    • 1
  • Umberto Ferraro Petrillo
    • 2
  • Gianluca Roscigno
    • 1
  • Carmine De Fusco
    • 1
  1. 1.Dipartimento di InformaticaUniversità degli Studi di SalernoFiscianoItaly
  2. 2.Dipartimento di Scienze StatisticheUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations