International Conference on Advanced Concepts for Intelligent Vision Systems

Advanced Concepts for Intelligent Vision Systems pp 464-473 | Cite as

On Blind Source Camera Identification

  • G. M. Farinella
  • M. V. Giuffrida
  • V. Digiacomo
  • S. Battiato
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9386)

Abstract

An interesting and challenging problem in digital image forensics is the identification of the device used to acquire an image. Although the source imaging device can be retrieved exploiting the file’s header (e.g., EXIF), this information can be easily tampered. This lead to the necessity of blind techniques to infer the acquisition device, by processing the content of a given image. Recent studies are concentrated on exploiting sensor pattern noise, or extracting a signature from the set of pictures. In this paper we compare two popular algorithms for the blind camera identification. The first approach extracts a fingerprint from a training set of images, by exploiting the camera sensor’s defects. The second one is based on image features extraction and it assumes that images can be affected by color processing and transformations operated by the camera prior to the storage. For the comparison we used two representative dataset of images acquired, using consumer and mobile cameras respectively. Considering both type of cameras this study is useful to understand whether the theories designed for classic consumer cameras maintain their performances on mobile domain.

Keyword

Blind source camera identification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Redi, J.A., Taktak, W., Dugelay, J.-L.: Digital image forensics: a booklet for beginners. Multimedia Tools and Applications 51(1), 133–162 (2010)CrossRefGoogle Scholar
  2. 2.
    Kee, E., Johnson, M.K., Farid, H.: Digital image authentication from JPEG headers. IEEE Transactions on Information Forensics and Security 6(3), 1066–1075 (2011)CrossRefGoogle Scholar
  3. 3.
    Piva, A.: An overview on image forensics. ISRN Signal Processing, Article ID 496701, 22 (2013)Google Scholar
  4. 4.
    Lukáš, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern noise. IEEE Transactions on Information Forensics and Security 1(2), 205–214 (2006)CrossRefGoogle Scholar
  5. 5.
    Gloe, T., Borowka, K., Winkler, A.: Feature-based camera model identification works in practice. In: Katzenbeisser, S., Sadeghi, A.-R. (eds.) IH 2009. LNCS, vol. 5806, pp. 262–276. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  6. 6.
    Gloe, T.: Feature-based forensic camera model identification. Transactions on Data Hiding and Multimedia Security 8, 42–62 (2012)Google Scholar
  7. 7.
    Holst, G.C.: CCD arrays, cameras, and displays, 2nd edn. JCD Publishing & SPIE Press, USA (1998)Google Scholar
  8. 8.
    Janesick, J.R.: Scientic Charge-Coupled Devices. SPIE Press, USA (2001)CrossRefGoogle Scholar
  9. 9.
    Chen, M., Fridrich, J., Goljan, M.: Digital imaging sensor identification (further study). In: Delp III, E.J., Wong, P.W. (ed.) Security, Steganography, and Watermarking of Multimedia Contents IX. Proceedings of the SPIE, vol. 6505 (2007)Google Scholar
  10. 10.
    Goljan, M., Fridrich, J., Filler, T.: Large scale test of sensor fingerprint camera identification. In: Proc. SPIE, Electronic Imaging, Security and Forensics of Multimedia Contents XI, pp. 18–22Google Scholar
  11. 11.
    Cooper, A.J.: Improved photo response non-uniformity (PRNU) based source camera identification. Forensic Science International 226(1–3), 132–141 (2013)CrossRefGoogle Scholar
  12. 12.
    Kharrazi, M., Sencar, H.T., Memon, N.: Blind source camera identification. In: 2004 International Conference on Image Processing, ICIP 2004, vol. 1, pp. 709–712 (2004)Google Scholar
  13. 13.
    Battiato, S., Bruna, A.R., Messina, G., Puglisi, G.: Image Processing for Embedded Devices. Bentham Science Publisher (2010)Google Scholar
  14. 14.
    Avcibas, I., Memon, N., Sankur, B.: Steganalysis using image quality metrics. Transaction on Image Processing 12(2), 221–229 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ismail, A., Bülent, S., Khalid, S.: Statistical evaluation of image quality measures. Journal of Electronic Imaging 12(2), 221–229 (2003)Google Scholar
  16. 16.
    Celiktutan, O., Sankur, B., Avcibas, I.: Blind identification of source cell-phone model. IEEE Transactions on Information Forensics and Security 3(3), 553–566 (2008)CrossRefGoogle Scholar
  17. 17.
    Cristianini, N., Shawe-Taylor, J.: An introduction to support Vector Machines: and other kernel-based learning methods. Cambridge University Press, New York (2000)CrossRefMATHGoogle Scholar
  18. 18.
    Gloe, T., Böhme, R.: The dresden image database for benchmarking digital image forensics. In: Proceedings of the 25th Symposium on Applied Computing (ACM SAC 2010), vol. 2, pp. 1585–1591 (2010)Google Scholar
  19. 19.
    Webb, A.R.: Statistical Pattern Recognition, 2nd edn. John Wiley & Sons Ltd., November 2002Google Scholar
  20. 20.
    Gloe, T., Böhme, R.: The dresden image database for benchmarking digital image forensics. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1584–1590 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • G. M. Farinella
    • 1
  • M. V. Giuffrida
    • 1
  • V. Digiacomo
    • 1
  • S. Battiato
    • 1
  1. 1.Image Processing Laboratory, Dipartimento di Matematica e InformaticaUniversity of CataniaCataniaItaly

Personalised recommendations