International Conference on Advanced Concepts for Intelligent Vision Systems

Advanced Concepts for Intelligent Vision Systems pp 3-14 | Cite as

BNRFBE Method for Blur Estimation in Document Images

  • Van Cuong Kieu
  • Florence Cloppet
  • Nicole Vincent
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9386)

Abstract

The efficiency of document image processing techniques depends on image quality that is impaired by many sources of degradation. These sources can be in document itself or arise from the acquisition process. In this paper, we are concerned with blur degradation without any prior knowledge on the blur origin. We propose to evaluate the blur parameter at local level on predefined zones without relying on any blur model. This parameter is linked to a fuzzy statistical analysis of the textual part of the document extracted in the initial image. The proposed measure is evaluated on DIQA database where the correlation between blur degree and OCR accuracy is computed. The results show that our blur estimation can help to predict OCR accuracy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caviedes, J., Gurbuz, S.: No-reference sharpness metric based on local edge kurtosis. In: Proceedings of the 2002 International Conference on Image Processing, vol. 3, pp. III-53–III-56 (2002)Google Scholar
  2. 2.
    Chung, Y.C., Wang, J.M., Bailey, R., Chen, S.W., Chang, S.L.: A non-parametric blur measure based on edge analysis for image processing applications. In: 2004 IEEE Conference on Cybernetics and Intelligent Systems, vol. 1, pp. 356–360, December 2004Google Scholar
  3. 3.
    Couzinie, F., Sun, J., Alamari, K., Ponce, J.: Learning to estimate and remove non-uniform image blur. In: Conference on Computer Vision and Pattern Recognition, Portland, USA, pp. 1075–1082, June 2013Google Scholar
  4. 4.
    Cutter, M., Manduchi, R.: Real time camera phone guidance for compliant, document image acquisition without sight. In: Conference on Document Analysis and Recognition, ICDAR, Washington, USA, pp. 408–412, August 2013Google Scholar
  5. 5.
    De, K., Masilamani, V.: A new no-reference image quality measure for blurred images in spatial domain. Journal of Image and Graphics 1(1) (2013)Google Scholar
  6. 6.
    Hirsch, M., Schuler, C.J., Harmeling, S., Scholkopf, B.: Fast removal of non-uniform camera shake. In: Proceedings of the 2011 International Conference on Computer Vision, ICCV 2011, pp. 463–470. IEEE Computer Society, Washington, DC (2011). http://dx.doi.org/10.1109/ICCV.2011.6126276
  7. 7.
    Khurshid, K., Siddiqi, I., Faure, C., Vincent, N.: Comparison of niblack inspired binarization methods for ancient documents. In: Proceedings of the Document Recognition and Retrieval XVI, DRR 2009, San Jose, CA, USA, pp. 463–470 (2009)Google Scholar
  8. 8.
    Kumar, D., Ramakrishnan, A.G.: Quad: Quality assessment of documents. In: Proceedings of the 2011 Camera-Based Document Analysis and Recognition, CBDAR 2011, Beijing, China, pp. 463–470 (2011)Google Scholar
  9. 9.
    Kumar, J., Chen, F., Doermann, D.: Sharpness estimation for document and scene images. In: 2012 21st International Conference on Pattern Recognition (ICPR), Tsukuba, Japan, November 2012Google Scholar
  10. 10.
    Kumar, J., Ye, P., Doermann, D.: A dataset for quality assessment of camera captured document images. In: Proceedings of the 2013 Camera-Based Document Analysis and Recognition, CBDAR 2013, Washington, DC, USA, pp. 113–125 (2013)Google Scholar
  11. 11.
    Marziliano, P., Dufaux, F., Winkler, S., Ebrahimi, T.: A no-reference perceptual blur metric. In: Proceedings of the 2002 International Conference on Image Processing, vol. 3, pp. III-57–III-60 (2002)Google Scholar
  12. 12.
    Peng, X., Cao, H., Subramanian, K., Prasad, R., Natarajan, P.: Automated image quality assessment for camera-captured ocr. In: 2011 18th IEEE International Conference on Image Processing (ICIP), Brussels, pp. 2621–2624, September 2011Google Scholar
  13. 13.
    Pertuz, S., Puig, D., Garcia, M.A.: Analysis of focus measure operators for shape-from-focus. Pattern Recogn. 46(5), 1415–1432 (2013)MATHCrossRefGoogle Scholar
  14. 14.
    Rice, S.V., Kanai, J., Nartker, T.A.: The fifth annual test of ocr accuracy. Tech. rep. (1996)Google Scholar
  15. 15.
    Rusinol, M., Chazalon, J., Ogier, J.M.: Normalisation et validation d’images de documents captures en mobilité. In: CIFED 2014, Nancy, France, pp. 109–124, September 2014Google Scholar
  16. 16.
    Sun, L., Cho, S., Wang, J., Hays, J.: Edge-based blur kernel estimation using patch priors. In: 2013 IEEE International Conference on Computational Photography (ICCP), Cambridge, MA, pp. 1–8, April 2013Google Scholar
  17. 17.
    Tiwari, S., Shukla, V.P., Biradar, S.R., Singh, A.K.: Blind restoration of motion blurred barcode images using ridgelet transform and radial basis function neural network, pp. 63–80, April 2014Google Scholar
  18. 18.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth International Conference on Computer Vision, Bombay, Inde, pp. 839–846, January 1998Google Scholar
  19. 19.
    Ye, P., Doermann, D.: Learning features for predicting ocr accuracy. In: 2012 21st International Conference on Pattern Recognition (ICPR), Tsukuba, Japan, pp. 3204–3207, November 2012Google Scholar
  20. 20.
    Ye, P., Doermann, D.: Document image quality assessment: A brief survey. In: 2013 12th International Conference on Document Analysis and Recognition (ICDAR), Washington, USA, pp. 723–727, August 2013Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Van Cuong Kieu
    • 1
  • Florence Cloppet
    • 1
  • Nicole Vincent
    • 1
  1. 1.LIPADE: Laboratoire d’Informatique Paris DescartesParis Descartes UniversityParisFrance

Personalised recommendations