Advertisement

A Concept for the Control, Monitoring and Visualization Center in Energy Lab 2.0

  • Clemens Düpmeier
  • Karl-Uwe Stucky
  • Ralf Mikut
  • Veit Hagenmeyer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9424)

Abstract

Energy Lab 2.0 is designed as a large experimental test and simulation field for multi-scale and multi-mode energy system facilities at KIT. A Smart Energy System Simulation and Control Center (SEnSSiCC) is the core component in terms of information and communication technology. The present article introduces basic concepts for the Control, Monitoring and Visualization Center (CMVC) of SEnSSiCC. The CMVC bundles all communication channels and real facilities, simulation environments, and data repositories into an integrated research environment for planning, control, monitoring, analyzing and visualization of smart grids and their components, and furthermore for evaluating future concepts for smart grid utility operation. Special emphasis is placed on the distributed computing operating system environment setup for the CMVC, the intended use of Big Data technologies, the polyglot approach for data management and analysis, and first concepts for implementing a hybrid agent based simulation environment. Also, the usage of web technologies and microservices are considered as key aspects of the overall architecture.

Keywords

Energy lab Energy system Microgrid Simulation Visualization Web technology 

References

  1. 1.
    Bernstein, D.: Containers and cloud: from LXC to docker to kubernetes. IEEE Cloud Comput. 1(3), 81–84 (2014)CrossRefGoogle Scholar
  2. 2.
    Energy Lab 2.0. (Teil-) Antrag an das Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg (2015)Google Scholar
  3. 3.
    Fang, X., Misra, S., Xue, G., Yang, D.: Smart grid – the new and improved power grid: a survey. IEEE Commun. Surv. Tutor. 14, 944–980 (2012)CrossRefGoogle Scholar
  4. 4.
    Fischer, F., Keim, D.A.: NStreamAware: real-time visual analytics for data streams to enhance situational awareness. In: Proceedings of the Eleventh Workshop on Visualization for Cyber Security, pp. 65–72. ACM (2014)Google Scholar
  5. 5.
    Galli, S., Scaglione, A., Wang, Z.: For the grid and through the grid: the role of power line communications in the smart grid. Proc. IEEE 99(6), 998–1027 (2011)CrossRefGoogle Scholar
  6. 6.
    Garcia, A.O., Bourov, S., Hammad, A., et al.: The large scale data facility: data intensive computing for scientific experiments. In: Proceedings of the IEEE International Symposium on Parallel and Distributed Processing Workshops and Ph.D. Forum, pp. 1467–1474 (2011)Google Scholar
  7. 7.
    Ghareeb, A.T., Mohamed, A.A., Mohammed, O.A.: DC microgrids and distribution systems: an overview. In: IEEE Power & Energy Society General Meeting, pp. 1–5 (2013)Google Scholar
  8. 8.
    Hagenmeyer, V., Cakmak, H.K., Düpmeier, C., Faulwasser, T., Isele, J., Keller, H.B., Kohlhepp, P., Kühnapfel, U., Stucky, U., Mikut, R.: Information and Communication Technology in EnergyLab 2.0. In: Proceedings of the Energy Science Technology, Karlsruhe (2015)Google Scholar
  9. 9.
    Hammerstrom, D.J., Ambrosio, R., Brous, J., et al.: Pacific Northwest GridWise Testbed Demonstration Projects, Part I. Olympic Peninsula Project. Pacific Northwest National Laboratory (PNNL), Richland (2007)Google Scholar
  10. 10.
    Kotsampopoulos, P., Kapetanaki, A., Messinis, G., Kleftakis, V., Hatziargyriou, N.: A power-hardware-in-the-loop facility for microgrids. Int. J. Distrib. Energy Resour. Technol. Sci. Publishers 9(1), 89–104 (2013)Google Scholar
  11. 11.
    Maaß, H., Cakmak, H.K., Bach, F., Mikut, R., Harrabi, A., Süß, W., Jakob, W., Stucky, K.-U., Kühnapfel, U.G., Hagenmeyer, V.: Data processing of high rate low voltage distribution grid recordings for smart grid monitoring and analysis. EURASIP J. Adv. Sig. Process. 2015, 21 (2015)CrossRefGoogle Scholar
  12. 12.
    Mackiewicz, R.E.: Overview of IEC 61850 and benefits. In: IEEE PES Power Systems Conference and Exposition (PSCE 2006). IEEE (2006)Google Scholar
  13. 13.
    Müller, S.C., Georg, H., Rehtanz, C., Wietfeld, C.: Hybrid simulation of power systems and ICT for real-time applications. In: Proceedings of the 3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe), pp. 1–7 (2012)Google Scholar
  14. 14.
    Paetz, A.-G., Becker, B., Fichtner, W., Schmeck, H.: Shifting electricity demand with smart home technologies–an experimental study on user acceptance. In: Proceedings of the 30th USAEE/IAEE North American Conference, vol. 19, p. 20 (2011)Google Scholar
  15. 15.
    Pignati, M., Popovic, M., Barreto Andrade, S., et al: Real-time state estimation of the EPFL-campus medium-voltage grid by using PMUs. In: Proceedings of the Sixth Conference on Innovative Smart Grid Technologies (2015)Google Scholar
  16. 16.
    Prasad, S., Avinash, S.B.: Smart meter data analytics using OpenTSDB and hadoop. In: 2013 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), pp. 1–6, 10–13 November 2013Google Scholar
  17. 17.
    Prasad, S., Avinash, S.B.: Application of polyglot persistence to enhance performance of the energy data management systems. In: 2014 International Conference on Advances in Electronics, Computers and Communications (ICAECC), pp. 1–6. IEEE (2014)Google Scholar
  18. 18.
    Rohjans, S., Lehnhoff, S., Schutte, S., Scherfke, S., Hussain, S.: mosaik - A modular platform for the evaluation of agent-based smart grid control. In: Proceedings of the Innovative Smart Grid Technologies Europe (ISGT EUROPE), pp. 1–5 (2013)Google Scholar
  19. 19.
    Schlachter, T., Düpmeier, C., Kusche, O., Schmitt, C., Schillinger, W.: Towards a search driven system architecture for environmental information portals. In: Denzer, R., Argent, R.M., Schimak, G., Hřebíček, J. (eds.) ISESS 2015. IFIP AICT, vol. 448, pp. 351–360. Springer, Heidelberg (2015)Google Scholar
  20. 20.
    Sato, T., et al.: Smart Grid Standards: Specifications. Requirements and Technologies. Wiley, Singapore (2015). ISBN 978-118-65369-2Google Scholar
  21. 21.
    Scholz, R., Beckmann, M., Pieper, C., Muster, M., Weber, R.: Considerations on providing the energy needs using exclusively renewable sources: energiewende in Germany. Renew. Sustain. Energy Rev. 35, 109–125 (2014). ElsevierCrossRefGoogle Scholar
  22. 22.
    Shukla, R.K., Pandey, P., Kumar, V.: Big data frameworks: at a glance. Int. J. Innovations Adv. Comput. Sci. IJACS 4(1), 169–175 (2015)Google Scholar
  23. 23.
    Waczowicz, S., Klaiber, S., Bretschneider, P., Konotop, I., Westermann, D., Reischl, M., Mikut, R.: Data mining to analyse the effects of price signals on household electricity customers. at -Automatisierungstechnik 62, 740–752 (2014)CrossRefGoogle Scholar
  24. 24.
    Zhang, P., Li, F., Bhatt, N.: Next-generation monitoring, analysis, and control for the future smart control centre. IEEE Trans. Smart Grid 1, 186–192 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Clemens Düpmeier
    • 1
  • Karl-Uwe Stucky
    • 1
  • Ralf Mikut
    • 1
  • Veit Hagenmeyer
    • 1
  1. 1.Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations