D-A-CH Conference on Energy Informatics

Energy Informatics pp 208-221 | Cite as

Increasing Data Center Energy Efficiency via Simulation and Optimization of Cooling Circuits - A Practical Approach

  • Torsten Wilde
  • Tanja Clees
  • Hayk Shoukourian
  • Nils Hornung
  • Michael Schnell
  • Inna Torgovitskaia
  • Eric Lluch Alvarez
  • Detlef Labrenz
  • Horst Schwichtenberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9424)

Abstract

The steady rise in energy consumption by data centers world wide over the last decade and the future 20 MW exascale-challenge in High Performance Computing (HPC) makes saving energy an important consideration for HPC data centers. A move from air-cooled HPC systems to indirect or direct water-cooled systems allowed for the use of chiller-less cold or hot water cooling. However, controlling such systems needs special attention in order to arrive at an optimal compromise of low energy consumption and robust operating conditions. This paper highlights a newly developed concept along with software tools for modeling the data center cooling circuits, collecting data, and simulating and analyzing operating conditions. A first model for the chiller-less cooling loop of the Leibniz Supercomputing Center (LRZ) will be presented and lessons learned will be discussed, demonstrating the possibilities offered by the new concept and tools.

Keywords

HPC Energy efficiency Energy reduction Adsorption Data center 

References

  1. 1.
    Azevedo, D., French, D.A., Power, E.N.: \(\text{ Pue }^{{\rm TM}}\): a comprehensive examination of the metric. White paper 49 (2012)Google Scholar
  2. 2.
    Cassirer, K., Clees, T., Klaassen, B., Nikitin, I., Nikitina, L.: MYNTS User’s Manual, Release 3.3. Fraunhofer SCAI, Sankt Augustin (2015). www.scai.fraunhofer.de/mynts
  3. 3.
    Clees, T., Hornung, N., Nikitin, I., Nikitina, L., Steffes-lai, D.: DesParO User’s Manual, Release 2.4. Fraunhofer SCAI, Sankt Augustin, Germany, December 2014. www.scai.fraunhofer.de/desparo
  4. 4.
    DCD Intelligence: Is the industry getting better at using power? Data Center Dynamics FOCUS 33, January/February 2014 33, 16–17 (2014). http://content.yudu.com/Library/A2nvau/FocusVolume3issue33/resources/index.htm?referrerUrl=
  5. 5.
    Grundel, S., Hornung, N., Klaassen, B., Benner, P., Clees, T.: Computing surrogates for gas network simulation using model order reduction. In: Koziel, S., Leifsson, L. (eds.) Surrogate-Based Modeling and Optimization: Applications in Engineering. Springer, New York (2013)Google Scholar
  6. 6.
    Hackenberg, D., Schöne, R., Ilsche, T., Molka, D., Schuchart, J., Geyer, R.: An energy efficiency feature survey of the intel haswell processor (2015)Google Scholar
  7. 7.
  8. 8.
    Leibniz Supercomputing Centre. http://www.lrz.de
  9. 9.
    Johnsson, L., Netzer, G.: SNIC/KTH; Eric Boyer, CINES; Paul Carpenter, BSC; Radosław Januszewski, PSNC; Giannis Koutsou, CaSToRC; Ole Widar Saastad, SIGMA/UiO; Giannos Stylianou, CaSToRC; Torsten Wilde, LRZ : D9.3.4 Final Report on Prototype Evaluation. PRACE 1IP-WP9 public deliverable p. 44 (2013). http://www.prace-ri.eu/IMG/pdf/d9.3.4_1ip.pdf
  10. 10.
    Rhein, B., Clees, T., Ruschitzka, M.: Robustness measures and numerical approximation of the cumulative density function of response surfaces. Comm. Statistics - Sim. Comp. 43(1), 1–17 (2014)Google Scholar
  11. 11.
    Shoukourian, H., Wilde, T., Auweter, A., Bode, A.: Monitoring power data: a first step towards a unified energy efficiency evaluation toolset for HPC data centers. Environ. Model. Softw. 56, 13–26 (2014). http://www.sciencedirect.com/science/article/pii/S1364815213002934, thematic issue on Modelling and evaluating the sustainability of smart solutionsCrossRefGoogle Scholar
  12. 12.
    Shoukourian, H., Wilde, T., Auweter, A., Bode, A.: Predicting the energy and power consumption of strong and weak scaling HPC applications. Supercomputing Frontiers and Innovations 1(2), 20–41 (2014)Google Scholar
  13. 13.
  14. 14.
  15. 15.
    Stansberry, M.: 2013 uptime institute annual data center industry survey report and full results. http://www.data-central.org/resource/collection/BC649AE0-4223-4EDE-92C7-29A659EF0900/uptime-institute-2013-data-center-survey.pdf
  16. 16.
  17. 17.
  18. 18.
    Wilde, T., Auweter, A., Patterson, M., Shoukourian, H., Huber, H., Bode, A., Labrenz, D., Cavazzoni, C.: DWPE, a new data center energy-efficiency metric bridging the gap between infrastructure and workload. In: 2014 International Conference on High Performance Computing Simulation (HPCS), pp. 893–901, July 2014Google Scholar
  19. 19.
    Wilde, T., Auweter, A., Shoukourian, H.: The 4 Pillar Framework for energy efficient HPC data centers. In: Computer Science - Research and Development, pp. 1–11 (2013). http://dx.doi.org/10.1007/s00450-013-0244-6

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Torsten Wilde
    • 1
    • 2
  • Tanja Clees
    • 3
  • Hayk Shoukourian
    • 1
    • 2
  • Nils Hornung
    • 3
  • Michael Schnell
    • 3
  • Inna Torgovitskaia
    • 3
  • Eric Lluch Alvarez
    • 3
  • Detlef Labrenz
    • 1
  • Horst Schwichtenberg
    • 3
  1. 1.Leibniz Supercomputing Centre of the Bavarian Academy of Science and HumanityGarching bei MünchenGermany
  2. 2.Technical University Munich (TUM)MunichGermany
  3. 3.Fraunhofer SCAI (SCAI)Sankt AugustinGermany

Personalised recommendations