Towards Realistic Flow Control in Power Grid Operation

  • Tamara Mchedlidze
  • Martin Nöllenburg
  • Ignaz Rutter
  • Dorothea Wagner
  • Franziska Wegner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9424)


Power flow control units (like FACTS) offer an increased controllability and may help to tackle problems like load distribution in future power grids. However, these control units are an expensive investment. We showed in our previous work [10] that placing few flow control units on buses achieves high controllability. However, current control units are placed on transmission lines rather than buses, which weakens the previous result. Therefore, we translate the models and graph-theoretic explanation to control units placed on branches. Using IEEE benchmark data, we show experimentally that few controllers on branches still suffice to achieve minimum possible operation cost. In addition, we show that when increasing the loads, adding a small number of control units on branches—a number comparable to the previous result—reduces the operation costs and increases the feasibility range.


Hybrid power flow model FACTS Transmission network control Graph theory 


  1. 1.
    Carpentier, J.: Contribution to the economic dispatch problem. Bull. Sac. France Elect. 8, 431–437 (1962)Google Scholar
  2. 2.
    Farivar, M., Low, S.: Branch flow model: relaxations and convexification - part II. IEEE Trans. Power Syst. 28(3), 2565–2572 (2013)CrossRefGoogle Scholar
  3. 3.
    Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey I. Energy Syst. 3(3), 221–258 (2012)CrossRefGoogle Scholar
  4. 4.
    Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey II. Energy Syst. 3(3), 259–289 (2012)CrossRefGoogle Scholar
  5. 5.
    Gerbex, S., Cherkaoui, R., Germond, A.: Optimal location of multi-type FACTS devices in a power system by means of genetic algorithms. IEEE Trans. Power Syst. 16(3), 537–544 (2001)CrossRefGoogle Scholar
  6. 6.
    Griffin, J., Atanackovic, D., Galiana, F.D.: A study of the impact of flexible AC transmission system devices on the economic-secure operation of power systems. In: 12th Power System Computer Conference, pp. 1077–1082 (1996)Google Scholar
  7. 7.
    Hemmecke, R., Kppe, M., Lee, J., Weismantel, R.: Nonlinear integer programming. In: Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A. (eds.) 50 Years of Integer Programming 1958–2008, pp. 561–618. Springer, Berlin (2010)Google Scholar
  8. 8.
    Hingorani, N.: Flexible AC transmission. IEEE Spectr. 30(4), 40–45 (1993)CrossRefGoogle Scholar
  9. 9.
    Ippolito, L., Siano, P.: Selection of optimal number and location of thyristor-controlled phase shifters using genetic based algorithms. IEE Proc. Gener. Transm. Distrib. 151(5), 630–637 (2004)CrossRefGoogle Scholar
  10. 10.
    Leibfried, T., Mchedlidze, T., Meyer-Hübner, N., Nöllenburg, M., Rutter, I., Sanders, P., Wagner, D., Wegner, F.: Operating power grids with few flow control buses. In: Proceedings of the ACM Sixth International Conference on Future Energy Systems, e-Energy 2015, pp. 289–294. ACM, New York (2015).
  11. 11.
    Lima, F., Galiana, F., Kockar, I., Munoz, J.: Phase shifter placement in large-scale systems via mixed integer linear programming. IEEE Trans. Power Syst. 18(3), 1029–1034 (2003)CrossRefGoogle Scholar
  12. 12.
    Momoh, J., El-Hawary, M., Adapa, R.: A review of selected optimal power flow literature to 1993. II: Newton, linear programming and interior point methods. IEEE Trans. Power Syst. 14(1), 105–111 (1999)CrossRefGoogle Scholar
  13. 13.
    Ongsakul, W., Jirapong, P.: Optimal allocation of FACTS devices to enhance total transfer capability using evolutionary programming. In: IEEE International Symposium on Circuits and Systems (ISCAS 2005), vol. 5, pp. 4175–4178Google Scholar
  14. 14.
    Sharma, N., Ghosh, A., Varma, R.: A novel placement strategy for FACTS controllers. IEEE Trans. Power Delivery 18(3), 982–987 (2003)CrossRefGoogle Scholar
  15. 15.
    Zimmerman, R.D., Murillo-Sanchez, C.E., Thomas, R.J.: MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tamara Mchedlidze
    • 1
  • Martin Nöllenburg
    • 1
  • Ignaz Rutter
    • 1
  • Dorothea Wagner
    • 1
  • Franziska Wegner
    • 1
  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations