Advertisement

Translating Babylonian Mathematical Astronomy: Neugebauer and Beyond

  • Mathieu OssendrijverEmail author
Chapter
Part of the Archimedes book series (ARIM, volume 45)

Abstract

Otto Neugebauer’s involvement with Babylonian mathematical astronomy, one of the central topics of his research, can be traced through more than 30 publications stretching over the period from 1936 to 1991. In this paper I aim to discuss Neugebauer’s approach to the translation of Babylonian mathematical astronomy and assess it in the light of subsequent research. Apart from the editions of astronomical tablets contained in Astronomical Cuneiform Texts (Neugebauer 1955) and elsewhere we can hope to learn something about this topic from his other works, since he often displays a profound interest in methodological issues. However, Neugebauer rarely discussed his method of translation, focussing instead on the mathematical methods developed by him for analysing astronomical tables and reconstructing the underlying algorithms and empirical data. Nevertheless, these aspects of Neugebauer’s methodology turn out to be relevant for understanding his approach to translation. Before discussing his translations I will therefore begin by exploring the broader methodological framework underlying Neugebauer’s research on Babylonian mathematical astronomy.

Keywords

Critical Edition Technical Terminology Procedure Text Arithmetical Term Pragmatic Meaning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aaboe, A., J.P. Britton, J.A. Henderson, O.N. Neugebauer, and A.J. Sachs. 1991. Saros cycle dates and related Babylonian astronomical texts. Transactions of the American Philosophical Society 81(6): 1–75.CrossRefGoogle Scholar
  2. Høyrup, J. 1993. On subtractive operations, subtractive numbers, and purportedly negative numbers in old Babylonian mathematics. Zeitschrift für Assyriologie 83: 42–60.Google Scholar
  3. Høyrup, J. 1996. Changing trends in the historiography of mesopotamian mathematics: An insider’s view. History of Science 34: 1–32.CrossRefGoogle Scholar
  4. Høyrup, J. 2002. Lengths, widths, surfaces. A portrait of old Babylonian algebra and its kin, Sources and studies in the history of mathematics and physical sciences. New York: Springer.CrossRefGoogle Scholar
  5. Kugler, F.X. 1900. Die babylonische Mondrechnung. Zwei Systeme der Chaldäer über den Lauf des Mondes und der Sonne. Freiburg i.Br: Herder Verlag.Google Scholar
  6. Kugler, F.X. 1907–1924. Sternkunde und Sterndienst in Babel, Buch I-II. Münster: Aschendorffsche Verlagsbuchhandlung.Google Scholar
  7. Neugebauer. 1932. Zur Transkription mathematischer und astronomischer Keilschrifttexte. Archiv für Orientforschung 8:221–223.Google Scholar
  8. Neugebauer, O.N. 1936a. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik B3, 271–286 [review of J. Schaumberger, 3. Ergänzungsheft zu F.X. Kugler, S.J., Sternkunde und Sterndienst in Babel].Google Scholar
  9. Neugebauer, O.N. 1936b. Über eine Untersuchungsmethode astronomischer Keilschrifttexte. Zeitschrift der Deutschen Morgenländischen Gesellschaft 90: 121–134.Google Scholar
  10. Neugebauer, O.N. 1936c. Jahreszeiten und Tageslängen in der babylonischen Astronomie. Osiris 2: 517–550.CrossRefGoogle Scholar
  11. Neugebauer, O.N. 1938a. Untersuchungen zur antiken Astronomie I. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik B 4: 29–33.Google Scholar
  12. Neugebauer, O.N. 1938b. Untersuchungen zur antiken Astronomie II. Datierung und Rekonstruktion von Texten des Systems II der Mondtheorie. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik B 4: 34–91.Google Scholar
  13. Neugebauer, O.N. 1938c. Untersuchungen zur antiken Astronomie III. Die babylonische Theorie der Breitenbewegung des Mondes. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik B 4: 193–346.Google Scholar
  14. Neugebauer, O.N. 1938d. Untersuchungen zur antiken Astronomie V. Der Halleysche “Saros” und andere Ergänzungen zu UAA III. Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik B 4: 407–411.Google Scholar
  15. Neugebauer, O.N. 1946. History of ancient astronomy: Problems and methods. Publications of the Astronomical Society of the Pacific 58(17–43): 104–142.CrossRefGoogle Scholar
  16. Neugebauer, O.N. 1952. The exact sciences in antiquity. Princeton: Princeton University Press [second edition: 1957, 1969. New York: Dover Publications].Google Scholar
  17. Neugebauer, O.N. 1953. The rising times in Babylonian astronomy. Journal of Cuneiform Studies 7: 100–102.CrossRefGoogle Scholar
  18. Neugebauer, O.N. 1955. Astronomical cuneiform texts. London: Lund Humphries.CrossRefGoogle Scholar
  19. Neugebauer, O.N. 1975. A history of ancient mathematical astronomy. New York: Springer.CrossRefGoogle Scholar
  20. Ossendrijver, M. 2012. Babylonian mathematical astronomy: Procedure texts, Sources in the history of mathematics and physical sciences. New York: Springer.CrossRefGoogle Scholar
  21. Schaumberger, J. 1935. Sternkunde und Sterndienst in Babel. Assyriologische, astronomische und astralmythologische Untersuchungen. 3. Ergänzungsheft. Münster: Aschendorffsche Verlagsbuchhandlung.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Excellence Cluster TOPOI/Institute of PhilosophyHumboldt UniversityBerlinGermany

Personalised recommendations