Advertisement

7 The Art of Networking: Vegetative Hyphal Fusion in Filamentous Ascomycete Fungi

  • André FleißnerEmail author
  • Antonio Serrano
Chapter
Part of the The Mycota book series (MYCOTA, volume I)

Abstract

Hyphal fusion is a common feature of the growth and development of filamentous ascomycete fungi. It occurs at various developmental stages, most prominently during colony establishment by germinating spores and during the formation of cross connections within mature mycelial colonies. Recent years have seen great advances in understanding the biological roles and the molecular mechanisms of this fascinating biological process. It has become apparent that hyphal fusion promotes the formation of the mycelial network, thereby increasing fitness and competitiveness of the fungal colony. On the molecular level, an intricate signaling network controlling communication, attraction, and merger of fusing hyphae has been identified. This network comprises many well-conserved factors, including MAP kinases, reactive oxygen-generating systems, Ca2+-binding regulators, the STRIPAK complex, and cell polarity factors, which are partially adopted in novel and surprising ways. Studying the role and function of hyphal fusion therefore holds much potential to further our understanding not only of fungal growth and development but also of general eukaryotic cell biology.

Keywords

Fusion Partner Fusion Pore Hyphal Fusion Cell Wall Integrity Pathway Membrane Recruitment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

Work in our group is supported by funding from the German Research Foundation (FL706-2) and the European Union (PITN-GA-2013-607963) to A.F.

References

  1. Aguilar PS, Baylies MK, Fleißner A, Helming L, Inoue N, Podbilewicz B, Wang H, Wong M (2013) Genetic basis of cell-cell fusion mechanisms. Trends Genet 29(7):427–437PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmad SS, Miles PG (1970) Hyphal fusions in Schizophyllum commune. 2. Effects of environmental and chemical factors. Mycologia 62:1008–1017CrossRefGoogle Scholar
  3. Aldabbous MS, Roca MG, Stout A, Huang IC, Read ND, Free SJ (2010) The ham-5, rcm-1 and rco-1 genes regulate hyphal fusion in Neurospora crassa. Microbiology 156(Pt 9):2621–2629PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bartnicki-Garcia S, Bartnicki DD, Gierz G, Lopez-Franco R, Bracker CE (1995) Evidence that Spitzenkorper behavior determines the shape of a fungal hypha: a test of the hyphoid model. Exp Mycol 19(2):153–159PubMedCrossRefGoogle Scholar
  5. Baskarathevan J, Jaspers MV, Jones EE, Cruickshank RH, Ridgway HJ (2012) Genetic and pathogenic diversity of Neofusicoccum parvum in New Zealand vineyards. Fungal Biol 116(2):276–288PubMedCrossRefGoogle Scholar
  6. Bastiaans E, Debets AJ, Aanen DK (2015) Experimental demonstration of the benefits of somatic fusion and the consequences for allorecognition. Evolution 69:1091–1099PubMedCrossRefGoogle Scholar
  7. Becker Y, Eaton CJ, Brasell E, May KJ, Becker M, Hassing B, Cartwright GM, Reinhold L, Scott B (2015) The fungal cell-wall integrity MAPK cascade is crucial for hyphal network formation and maintenance of restrictive growth of Epichloe festucae in symbiosis with Lolium perenne. Mol Plant Microbe Interact 28(1):69–85PubMedCrossRefGoogle Scholar
  8. Bernhards Y, Poggeler S (2011) The phocein homologue SmMOB3 is essential for vegetative cell fusion and sexual development in the filamentous ascomycete Sordaria macrospora. Curr Genet 57:133–149PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bistis GN, Perkins DD, Read ND (2003) Different cell types in Neurospora crassa. Fungal Genet Newslett 50:17–19Google Scholar
  10. Blaise S, de Parseval N, Benit L, Heidmann T (2003) Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc Natl Acad Sci USA 100(22):13013–13018PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bleichrodt RJ, van Veluw GJ, Recter B, Maruyama J, Kitamoto K, Wosten HA (2012) Hyphal heterogeneity in Aspergillus oryzae is the result of dynamic closure of septa by Woronin bodies. Mol Microbiol 86(6):1334–1344PubMedCrossRefGoogle Scholar
  12. Bloemendal S, Bernhards Y, Bartho K, Dettmann A, Voigt O, Teichert I, Seiler S, Wolters DA, Poggeler S, Kuck U (2012) A homologue of the human STRIPAK complex controls sexual development in fungi. Mol Microbiol 84(2):310–323PubMedCrossRefGoogle Scholar
  13. Bodie EA, Armstrong GL, Dunn-Coleman NS (1994) Strain improvement of chymosin-producing strains of Aspergillus niger var. awamori using parasexual recombination. Enzyme Microb Technol 16(5):376–382PubMedCrossRefGoogle Scholar
  14. Buller A (1933) Researches on fungi, vol V. Longman, LondonGoogle Scholar
  15. Charlton ND, Shoji JY, Ghimire SR, Nakashima J, Craven KD (2012) Deletion of the fungal gene soft disrupts mutualistic symbiosis between the grass endophyte Epichloe festucae and the host plant. Eukaryot Cell 11(12):1463–1471PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cho W, Stahelin RV (2006) Membrane binding and subcellular targeting of C2 domains. Biochim Biophys Acta 1761(8):838–849PubMedCrossRefGoogle Scholar
  17. Choi KY, Satterberg B, Lyons DM, Elion EA (1994) Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 78(3):499–512PubMedCrossRefGoogle Scholar
  18. Clay K, Schardl C (2002) Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat 160(Suppl 4):S99–S127PubMedCrossRefGoogle Scholar
  19. Collinge AJ, Markham P (1985) Woronin bodies rapidly plug septal pores of severed Penicillium chrysogenum hyphae. Exp Mycol 9:80–85CrossRefGoogle Scholar
  20. Craven KD, Velez H, Cho Y, Lawrence CB, Mitchell TK (2008) Anastomosis is required for virulence of the fungal necrotroph Alternaria brassicicola. Eukaryot Cell 7(4):675–683PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dahlberg KR, Van Etten JL (1982) Physiology and biochemistry of fungal sporulation. Annu Rev Phytopathol 20:281–301CrossRefGoogle Scholar
  22. De Bary A (1884) Vergleichende Morphologie und Biologie der Pilze, Mycetozoen und Bacterien. Wilhelm Engelmann, LeipzigCrossRefGoogle Scholar
  23. Debets AJ, Swart K, Bos CJ (1990) Genetic analysis of Aspergillus niger: isolation of chlorate resistance mutants, their use in mitotic mapping and evidence for an eighth linkage group. Mol Gen Genet 221(3):453–458PubMedCrossRefGoogle Scholar
  24. Debets F, Swart K, Hoekstra RF, Bos CJ (1993) Genetic maps of eight linkage groups of Aspergillus niger based on mitotic mapping. Curr Genet 23(1):47–53PubMedCrossRefGoogle Scholar
  25. Dettmann A, Illgen J, März S, Schürg T, Fleißner A, Seiler S (2012) The NDR kinase scaffold HYM1/MO25 is essential for MAK2 MAP kinase signaling in Neurospora crassa. PLoS Genet 8(9), e1002950PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dettmann A, Heilig Y, Ludwig S, Schmitt K, Illgen J, Fleißner A, Valerius O, Seiler S (2013) HAM-2 and HAM-3 are central for the assembly of the Neurospora STRIPAK complex at the nuclear envelope and regulate nuclear accumulation of the MAP kinase MAK-1 in a MAK-2-dependent manner. Mol Microbiol 90(4):796–812PubMedCrossRefGoogle Scholar
  27. Dettmann A, Heilig Y, Valerius O, Ludwig S, Seiler S (2014) Fungal communication requires the MAK-2 pathway elements STE-20 and RAS-2, the NRC-1 adapter STE-50 and the MAP kinase scaffold HAM-5. PLoS Genet 10(11), e1004762PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dowson CG, Rayner ADM, Boddy L (1988) The form and outcome of mycelial interactions involving cord-forming decomposer basidiomycetes in homogeneous and heterogeneous environments. New Phytol 109:423–432CrossRefGoogle Scholar
  29. Engh I, Wurtz C, Witzel-Schlomp K, Zhang HY, Hoff B, Nowrousian M, Rottensteiner H, Kuck U (2007) The WW domain protein PRO40 is required for fungal fertility and associates with Woronin bodies. Eukaryot Cell 6(5):831–843PubMedPubMedCentralCrossRefGoogle Scholar
  30. Fischer-Harman V, Jackson KJ, Munoz A, Shoji JY, Read ND (2012) Evidence for tryptophan being a signal molecule that inhibits conidial anastomosis tube fusion during colony initiation in Neurospora crassa. Fungal Genet Biol 49(11):896–902PubMedCrossRefGoogle Scholar
  31. Fleißner A (2012) Hyphal fusion. In: Perez-Martin J, Di Pietro A (eds) Morphogenesis and pathogenicity in fungi. Springer, Berlin, pp 43–60CrossRefGoogle Scholar
  32. Fleißner A, Glass NL (2007) SO, a protein involved in hyphal fusion in Neurospora crassa, localizes to septal plugs. Eukaryot Cell 6(1):84–94PubMedCrossRefGoogle Scholar
  33. Fleißner A, Sarkar S, Jacobson DJ, Roca MG, Read ND, Glass NL (2005) The so locus is required for vegetative cell fusion and postfertilization events in Neurospora crassa. Eukaryot Cell 4(5):920–930PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fleißner A, Diamond S, Glass NL (2009a) The Saccharomyces cerevisiae PRM1 homolog in Neurospora crassa is involved in vegetative and sexual cell fusion events but also has postfertilization functions. Genetics 181(2):497–510PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fleißner A, Leeder AC, Roca MG, Read ND, Glass NL (2009b) Oscillatory recruitment of signaling proteins to cell tips promotes coordinated behavior during cell fusion. Proc Natl Acad Sci USA 106(46):19387–19392PubMedPubMedCentralCrossRefGoogle Scholar
  36. Frendo JL, Olivier D, Cheynet V, Blond JL, Bouton O, Vidaud M, Rabreau M, Evain-Brion D, Mallet F (2003) Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation. Mol Cell Biol 23(10):3566–3574PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fu C, Iyer P, Herkal A, Abdullah J, Stout A, Free SJ (2011) Identification and characterization of genes required for cell-to-cell fusion in Neurospora crassa. Eukaryot Cell 10(8):1100–1109PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fu C, Ao J, Dettmann A, Seiler S, Free SJ (2014) Characterization of the Neurospora crassa cell fusion proteins, HAM-6, HAM-7, HAM-8, HAM-9, HAM-10, AMPH-1 and WHI-2. PLoS ONE 9(10), e107773PubMedPubMedCentralCrossRefGoogle Scholar
  39. Giesbert S, Siegmund U, Schumacher J, Kokkelink L, Tudzynski P (2014) Functional analysis of BcBem1 and its interaction partners in Botrytis cinerea: impact on differentiation and virulence. PLoS ONE 9(5), e95172PubMedPubMedCentralCrossRefGoogle Scholar
  40. Glass NL, Dementhon K (2006) Non-self recognition and programmed cell death in filamentous fungi. Curr Opin Microbiol 9(6):553–558PubMedCrossRefGoogle Scholar
  41. Glass NL, Kaneko I (2003) Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot Cell 2(1):1–8PubMedPubMedCentralCrossRefGoogle Scholar
  42. Glass NL, Kuldau GA (1992) Mating type and vegetative incompatibility in filamentous ascomycetes. Annu Rev Phytopathol 30:201–224PubMedCrossRefGoogle Scholar
  43. Glass NL, Jacobson DJ, Shiu PK (2000) The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annu Rev Genet 34:165–186PubMedCrossRefGoogle Scholar
  44. Goryachev AB, Lichius A, Wright GD, Read ND (2012) Excitable behavior can explain the “ping-pong” mode of communication between cells using the same chemoattractant. Bioessays 34:259–266PubMedCrossRefGoogle Scholar
  45. Harris MJ, Boddy L (2005) Nutrient movement and mycelial reorganization in established systems of Phanerochaete velutina, following arrival of colonized wood resources. Microb Ecol 50(2):141–151PubMedCrossRefGoogle Scholar
  46. Heiman MG, Walter P (2000) Prm1p, a pheromone-regulated multispanning membrane protein, facilitates plasma membrane fusion during yeast mating. J Cell Biol 151(3):719–730PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hickey PC, Jacobson D, Read ND, Louise Glass NL (2002) Live-cell imaging of vegetative hyphal fusion in Neurospora crassa. Fungal Genet Biol 37(1):109–119PubMedCrossRefGoogle Scholar
  48. Holmer L, Stenlid J (1993) The importance of inoculum size for the competitive ability of wood decomposing fungi. FEMS Microbiol Ecol 12:169–176CrossRefGoogle Scholar
  49. Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67(7):2982–2992PubMedPubMedCentralCrossRefGoogle Scholar
  50. Howard RJ (1981) Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkorper, cytoskeleton and endomembranes after freeze-substitution. J Cell Sci 48:89–103PubMedGoogle Scholar
  51. Huang G, Dougherty SD, Erdman SE (2009) Conserved WCPL and CX4C domains mediate several mating adhesin interactions in Saccharomyces cerevisiae. Genetics 182(1):173–189PubMedPubMedCentralCrossRefGoogle Scholar
  52. Huang HT, Maruyama J, Kitamoto K (2013) Aspergillus oryzae AoSO is a novel component of stress granules upon heat stress in filamentous fungi. PLoS ONE 8(8), e72209PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hwang J, Pallas DC (2014) STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol 47:118–148PubMedCrossRefGoogle Scholar
  54. Hyakumachi M, Ui T (1987) Non-self-anastomosing isolates of Rhizoctonia solani obtained from fields of sugarbeet monoculture. Trans Br Mycol Soc 89(2):155–159CrossRefGoogle Scholar
  55. Ishikawa FH, Souza EA, Read ND, Roca MG (2010) Live-cell imaging of conidial fusion in the bean pathogen, Colletotrichum lindemuthianum. Fungal Biol 114(1):2–9. doi: 10.1016/j.funbio.2009.11.006, S1878-6146(09)00240-2 [pii]PubMedCrossRefGoogle Scholar
  56. Ishikawa FH, Souza EA, Shoji JY, Connolly L, Freitag M, Read ND, Roca MG (2012) Heterokaryon incompatibility is suppressed following conidial anastomosis tube fusion in a fungal plant pathogen. PLoS ONE 7(2), e31175PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jacobs H, Boswell GP, Scrimgeour CM, Davidson FA, Gadd GM, Ritz K (2004) Translocation of carbon by Rhizoctonia solani in nutritionally-heterogeneous microcosms. Mycol Res 108(Pt 4):453–462PubMedCrossRefGoogle Scholar
  58. Jedd G (2007) Natural history of the fungal hypha: how Woronin bodies support a multicellular lifestyle. In: Gadd G, Watkinson SC, Dyer PS (eds) Fungi in the environment. Cambridge University Press, Cambridge, pp 22–37CrossRefGoogle Scholar
  59. Jonkers W, Leeder AC, Ansong C, Wang Y, Yang F, Starr TL, Camp DG 2nd, Smith RD, Glass NL (2014) HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa. PLoS Genet 10(11), e1004783, PGENETICS-D-14-01795 [pii]PubMedPubMedCentralCrossRefGoogle Scholar
  60. Jun SC, Lee SJ, Park HJ, Kang JY, Leem YE, Yang TH, Chang MH, Kim JM, Jang SH, Kim HG, Han DM, Chae KS, Jahng KY (2011) The MpkB MAP kinase plays a role in post-karyogamy processes as well as in hyphal anastomosis during sexual development in Aspergillus nidulans. J Microbiol 49(3):418–430PubMedCrossRefGoogle Scholar
  61. Kasuga T, Glass NL (2008) Dissecting colony development of Neurospora crassa using mRNA profiling and comparative genomics approaches. Eukaryot Cell 7(9):1549–1564PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kim H, Borkovich KA (2004) A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Mol Microbiol 52(6):1781–1798PubMedCrossRefGoogle Scholar
  63. Kim H, Borkovich KA (2006) Pheromones are essential for male fertility and sufficient to direct chemotropic polarized growth of trichogynes during mating in Neurospora crassa. Eukaryot Cell 5(3):544–554PubMedPubMedCentralCrossRefGoogle Scholar
  64. Köhler E (1929) Beiträge zur Kenntnis der vegetativen anastomosen der Pilze I. Planta 8:140–153CrossRefGoogle Scholar
  65. Köhler E (1930) Zur Kenntnis der vegetativen Anastomosen der Pilze (II. Mitteilung). Planta 10:495–522CrossRefGoogle Scholar
  66. Kozubowski L, Saito K, Johnson JM, Howell AS, Zyla TR, Lew DJ (2008) Symmetry-breaking polarization driven by a Cdc42p GEF-PAK complex. Curr Biol 18(22):1719–1726PubMedPubMedCentralCrossRefGoogle Scholar
  67. Laibach F (1928) Über Zellfusionen bei Pilzen. Planta 5:340–359CrossRefGoogle Scholar
  68. Lamson RE, Takahashi S, Winters MJ, Pryciak PM (2006) Dual role for membrane localization in yeast MAP kinase cascade activation and its contribution to signaling fidelity. Curr Biol 16(6):618–623PubMedCrossRefGoogle Scholar
  69. Leeder AC, Palma-Guerrero J, Glass NL (2011) The social network: deciphering fungal language. Nat Rev Microbiol 9(6):440–451PubMedCrossRefGoogle Scholar
  70. Leeder AC, Jonkers W, Li J, Glass NL (2013) Early colony establishment in Neurospora crassa requires a MAP kinase regulatory network. Genetics 195(3):883–898PubMedPubMedCentralCrossRefGoogle Scholar
  71. Leeuw T, Fourest-Lieuvin A, Wu C, Chenevert J, Clark K, Whiteway M, Thomas DY, Leberer E (1995) Pheromone response in yeast: association of Bem1p with proteins of the MAP kinase cascade and actin. Science 270(5239):1210–1213PubMedCrossRefGoogle Scholar
  72. Leu LS (1967) Anastomosis in Venturia inaequalis (Cke.) Wint. PhD, University of Wisconsin, MadisonGoogle Scholar
  73. Levin AM, de Vries RP, Conesa A, de Bekker C, Talon M, Menke HH, van Peij NN, Wosten HA (2007) Spatial differentiation in the vegetative mycelium of Aspergillus niger. Eukaryot Cell 6(12):2311–2322PubMedPubMedCentralCrossRefGoogle Scholar
  74. Li R, Wedlich-Soldner R (2009) Bem1 complexes and the complexity of yeast cell polarization. Curr Biol 19(5):R194–R195; author reply R195PubMedCrossRefGoogle Scholar
  75. Li D, Bobrowicz P, Wilkinson HH, Ebbole DJ (2005) A mitogen-activated protein kinase pathway essential for mating and contributing to vegetative growth in Neurospora crassa. Genetics 170(3):1091–1104PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lichius A, Lord KM (2014) Chemoattractive mechanisms in filamentous fungi. Open Mycol J 8(Suppl-1, M2):28–57CrossRefGoogle Scholar
  77. Lichius A, Lord KM, Jeffree CE, Oborny R, Boonyarungsrit P, Read ND (2012) Importance of MAP kinases during protoperithecial morphogenesis in Neurospora crassa. PLoS ONE 7(8), e42565PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lichius A, Goryachev AB, Fricker MD, Obara B, Castro-Longoria E, Read ND (2014) CDC-42 and RAC-1 regulate opposite chemotropisms in Neurospora crassa. J Cell Sci 127(Pt 9):1953–1965PubMedCrossRefGoogle Scholar
  79. Liu D, Novick P (2014) Bem1p contributes to secretory pathway polarization through a direct interaction with Exo70p. J Cell Biol 207(1):59–72PubMedPubMedCentralCrossRefGoogle Scholar
  80. Loera O, Cordova J (2003) Improvement of xylanase production by a parasexual cross between Aspergillus niger strains. Braz Arch Biol Technol 46(2):177–181CrossRefGoogle Scholar
  81. Lopez-Berges MS, Rispail N, Prados-Rosales RC, Di Pietro A (2010) A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. Plant Cell 22(7):2459–2475PubMedPubMedCentralCrossRefGoogle Scholar
  82. Maddi A, Dettman A, Fu C, Seiler S, Free SJ (2012) WSC-1 and HAM-7 are MAK-1 MAP kinase pathway sensors required for cell wall integrity and hyphal fusion in Neurospora crassa. PLoS ONE 7(8), e42374PubMedPubMedCentralCrossRefGoogle Scholar
  83. Maerz S, Ziv C, Vogt N, Helmstaedt K, Cohen N, Gorovits R, Yarden O, Seiler S (2008) The nuclear Dbf2-related kinase COT1 and the mitogen-activated protein kinases MAK1 and MAK2 genetically interact to regulate filamentous growth, hyphal fusion and sexual development in Neurospora crassa. Genetics 179(3):1313–1325PubMedPubMedCentralCrossRefGoogle Scholar
  84. Markham P (1994) Occlusions of septal pores in filamentous fungi. Mycol Res 98(10):1089–1106CrossRefGoogle Scholar
  85. Maruyama J, Escano CS, Kitamoto K (2010) AoSO protein accumulates at the septal pore in response to various stresses in the filamentous fungus Aspergillus oryzae. Biochem Biophys Res Commun 391(1):868–873PubMedCrossRefGoogle Scholar
  86. Matheos D, Metodiev M, Muller E, Stone D, Rose MD (2004) Pheromone-induced polarization is dependent on the Fus3p MAPK acting through the formin Bni1p. J Cell Biol 165(1):99–109PubMedPubMedCentralCrossRefGoogle Scholar
  87. Mohler WA, Shemer G, del Campo JJ, Valansi C, Opoku-Serebuoh E, Scranton V, Assaf N, White JG, Podbilewicz B (2002) The type I membrane protein EFF-1 is essential for developmental cell fusion. Dev Cell 2(3):355–362, doi:S1534580702001296 [pii]PubMedCrossRefGoogle Scholar
  88. Nordbring-Hertz B, Friman E, Veenhuis M (1989) Hyphal fusion during initial stages of trap formation in Arthrobotrys oligospora. Antonie Van Leeuwenhoek 55(3):237–244PubMedCrossRefGoogle Scholar
  89. Nordzieke S, Zobel T, Franzel B, Wolters DA, Kuck U, Teichert I (2014) A fungal SLMAP homolog plays a fundamental role in development and localizes to the nuclear envelope, ER, and mitochondria. Eukaryot Cell. doi: 10.1128/EC.00241-14 PubMedGoogle Scholar
  90. Palma-Guerrero J, Hall CR, Kowbel D, Welch J, Taylor JW, Brem RB, Glass NL (2013) Genome wide association identifies novel loci involved in fungal communication. PLoS Genet 9(8), e1003669PubMedPubMedCentralCrossRefGoogle Scholar
  91. Palma-Guerrero J, Leeder AC, Welch J, Glass NL (2014) Identification and characterization of LFD1, a novel protein involved in membrane merger during cell fusion in Neurospora crassa. Mol Microbiol 92(1):164–182PubMedCrossRefGoogle Scholar
  92. Pandey A, Roca MG, Read ND, Glass NL (2004) Role of a mitogen-activated protein kinase pathway during conidial germination and hyphal fusion in Neurospora crassa. Eukaryot Cell 3(2):348–358PubMedPubMedCentralCrossRefGoogle Scholar
  93. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153–183. doi: 10.1210/edrv.22.2.0428 PubMedGoogle Scholar
  94. Poggeler S, Kuck U (2004) A WD40 repeat protein regulates fungal cell differentiation and can be replaced functionally by the mammalian homologue striatin. Eukaryot Cell 3(1):232–240PubMedPubMedCentralCrossRefGoogle Scholar
  95. Pontecorvo G (1956) The parasexual cycle in fungi. Annu Rev Microbiol 10:393–400PubMedCrossRefGoogle Scholar
  96. Prados Rosales RC, Di Pietro A (2008) Vegetative hyphal fusion is not essential for plant infection by Fusarium oxysporum. Eukaryot Cell 7(1):162–171PubMedCrossRefGoogle Scholar
  97. Read ND, Fleißner A, Roca MG, Glass NL (2010) Hyphal fusion. In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi. ASM Press, Washington, DC, pp 260–273CrossRefGoogle Scholar
  98. Read ND, Goryachev AB, Lichius A (2012) The mechanistic basis of self-fusion between conidial anastomosis tubes during fungal colony initiation. Fungal Biol Rev 26:1–11CrossRefGoogle Scholar
  99. Richard F, Glass NL, Pringle A (2012) Cooperation among germinating spores facilitates the growth of the fungus, Neurospora crassa. Biol Lett 8(3):419–422PubMedPubMedCentralCrossRefGoogle Scholar
  100. Riquelme M, Reynaga-Pena CG, Gierz G, Bartnicki-Garcia S (1998) What determines growth direction in fungal hyphae? Fungal Genet Biol 24(1–2):101–109PubMedCrossRefGoogle Scholar
  101. Riquelme M, Yarden O, Bartnicki-Garcia S, Bowman B, Castro-Longoria E, Free SJ, Fleißner A, Freitag M, Lew RR, Mourino-Perez R, Plamann M, Rasmussen C, Richthammer C, Roberson RW, Sanchez-Leon E, Seiler S, Watters MK (2011) Architecture and development of the Neurospora crassa hypha -- a model cell for polarized growth. Fungal Biol 115(6):446–474PubMedCrossRefGoogle Scholar
  102. Roca MG, Davide LC, Mendes-Costa MC, Wheals A (2003) Conidial anastomosis tubes in Colletotrichum. Fungal Genet Biol 40(2):138–145PubMedCrossRefGoogle Scholar
  103. Roca MG, Davide LC, Davide LM, Mendes-Costa MC, Schwan RF, Wheals AE (2004) Conidial anastomosis fusion between Colletotrichum species. Mycol Res 108(Pt 11):1320–1326PubMedCrossRefGoogle Scholar
  104. Roca M, Read ND, Wheals AE (2005a) Conidial anastomosis tubes in filamentous fungi. FEMS Microbiol Lett 249(2):191–198CrossRefGoogle Scholar
  105. Roca MG, Arlt J, Jeffree CE, Read ND (2005b) Cell biology of conidial anastomosis tubes in Neurospora crassa. Eukaryot Cell 4(5):911–919PubMedPubMedCentralCrossRefGoogle Scholar
  106. Roca MG, Weichert M, Siegmund U, Tudzynski P, Fleißner A (2012) Germling fusion via conidial anastomosis tubes in the grey mould Botrytis cinerea requires NADPH oxidase activity. Fungal Biol 116(3):379–387PubMedCrossRefGoogle Scholar
  107. Roncal T, Cordobes S, Sterner O, Ugalde U (2002) Conidiation in Penicillium cyclopium is induced by conidiogenone, an endogenous diterpene. Eukaryot Cell 1(5):823–829PubMedPubMedCentralCrossRefGoogle Scholar
  108. Roper M, Ellison C, Taylor JW, Glass NL (2011) Nuclear and genome dynamics in multinucleate ascomycete fungi. Curr Biol 21(18):R786–R793PubMedPubMedCentralCrossRefGoogle Scholar
  109. Roper M, Simonin A, Hickey PC, Leeder A, Glass NL (2013) Nuclear dynamics in a fungal chimera. Proc Natl Acad Sci USA 110(32):12875–12880PubMedPubMedCentralCrossRefGoogle Scholar
  110. Rothert W (1892) Über Sclerotium hydrophilum Sacc. einen sporenlosen Pilz. Botanische Zeitung 50:358–370Google Scholar
  111. Ruiz-Roldan MC, Kohli M, Roncero MI, Philippsen P, Di Pietro A, Espeso EA (2010) Nuclear dynamics during germination, conidiation, and hyphal fusion of Fusarium oxysporum. Eukaryot Cell 9(8):1216–1224PubMedPubMedCentralCrossRefGoogle Scholar
  112. Sapir A, Choi J, Leikina E, Avinoam O, Valansi C, Chernomordik LV, Newman AP, Podbilewicz B (2007) AFF-1, a FOS-1-regulated fusogen, mediates fusion of the anchor cell in C. elegans. Dev Cell 12(5):683–698PubMedPubMedCentralCrossRefGoogle Scholar
  113. Schurg T, Brandt U, Adis C, Fleißner A (2012) The Saccharomyces cerevisiae BEM1 homologue in Neurospora crassa promotes co-ordinated cell behaviour resulting in cell fusion. Mol Microbiol 86(2):349–366PubMedCrossRefGoogle Scholar
  114. Simon UK, Bauer R, Rioux D, Simard M, Oberwinkler F (2005) The vegetative life-cycle of the clover pathogen Cymadothea trifolii as revealed by transmission electron microscopy. Mycol Res 109(Pt 7):764–778PubMedCrossRefGoogle Scholar
  115. Simonin AR, Rasmussen CG, Yang M, Glass NL (2010) Genes encoding a striatin-like protein (ham-3) and a forkhead associated protein (ham-4) are required for hyphal fusion in Neurospora crassa. Fungal Genet Biol 47(10):855–868PubMedCrossRefGoogle Scholar
  116. Simonin A, Palma-Guerrero J, Fricker M, Glass NL (2012) Physiological significance of network organization in fungi. Eukaryot Cell 11(11):1345–1352PubMedPubMedCentralCrossRefGoogle Scholar
  117. Takemoto D, Kamakura S, Saikia S, Becker Y, Wrenn R, Tanaka A, Sumimoto H, Scott B (2011) Polarity proteins Bem1 and Cdc24 are components of the filamentous fungal NADPH oxidase complex. Proc Natl Acad Sci USA 108(7):2861–2866PubMedPubMedCentralCrossRefGoogle Scholar
  118. Teichert I, Steffens EK, Schnass N, Franzel B, Krisp C, Wolters DA, Kuck U (2014) PRO40 is a scaffold protein of the cell wall integrity pathway, linking the MAP kinase module to the upstream activator protein kinase C. PLoS Genet 10(9), e1004582PubMedPubMedCentralCrossRefGoogle Scholar
  119. Trinci APJ (1984) Regulation of hyphal branching and hyphal orientation. In: Jennings DH, Rayner ADM (eds) The ecology and physiology of the fungal mycelium. Cambridge University Press, Cambridge, UK, pp 23–52Google Scholar
  120. Trinci AP, Collinge AJ (1973) Structure and plugging of septa of wild type and spreading colonial mutants of Neurospora crassa. Arch Mikrobiol 91(4):355–364PubMedCrossRefGoogle Scholar
  121. Ward H (1888) A lily disease. Ann Bot 2(7):319–382CrossRefGoogle Scholar
  122. Wei H, Requena N, Fischer R (2003) The MAPKK kinase SteC regulates conidiophore morphology and is essential for heterokaryon formation and sexual development in the homothallic fungus Aspergillus nidulans. Mol Microbiol 47(6):1577–1588PubMedCrossRefGoogle Scholar
  123. Weichert M, Fleißner A (2015) Anastomosis and heterokaryon formation. In: Van den Berg M, Maruthachalam K (eds) Genetic transformation systems in fungi, vol 2. Springer, Heidelberg, pp 3–21Google Scholar
  124. Yokoyama K, Ogoshi A (1988) Studies on hyphal anastomosis of Rhizoctonia solani V. Nutritional conditions for anastomosis. Trans Mycol Soc Japan 29:125–132Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institut für GenetikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations