Advertisement

A Novel Knowledge-Based Architecture for Concept Mining on Italian and English Texts

  • Dante Degl’Innocenti
  • Dario De Nart
  • Carlo Tasso
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 553)

Abstract

Manually annotating unstructured texts for finding significant concepts is a knowledge intensive process and, given the amount of data available on the Web and on digital libraries nowadays, it is not cost effective. Therefore automatic annotators capable to perform like human experts are extremely desirable. State of the art systems already offer good performance but they are often limited to one language, one domain of application, and can not entail concepts that do not appear but are logically/semantically implied in the text. In order to overcome this shortcomings, we propose here a novel knowledge-based, language independent, unsupervised approach towards keyphrase generation. We developed DIKpE-G, an experimental prototype system which integrates different kinds of knowledge, from linguistic to statistical, meta/structural, social, and ontological knowledge. DIKpE-G is capable to extract, evaluate, and infer meaningful concepts from a natural language text. The prototype performs well over both Italian and English texts.

Keywords

Concept extraction Keyphrase extraction Information extraction Italian language Natural language processing Text analysis Text classification Text summarization 

References

  1. 1.
    Velardi, P., Navigli, R., Cucchiarelli, A., D’Antonio, F.: A new content-based model for social network analysis. In: ICSC, pp. 18–25. IEEE Computer Society (2008)Google Scholar
  2. 2.
    W3Techs: Usage of content languages for websites (2014). http://w3techs.com/technologies
  3. 3.
    Zhang, C.: Automatic keyword extraction from documents using conditional random fields. J. Comput. Inf. Syst. 4, 1169–1180 (2008)Google Scholar
  4. 4.
    Matsuo, Y., Ishizuka, M.: Keyword extraction from a single document using word co-occurrence statistical information. Int. J. Artif. Intell. Tools 13, 157–169 (2004)CrossRefGoogle Scholar
  5. 5.
    Barker, K., Cornacchia, N.: Using noun phrase heads to extract document keyphrases. In: Hamilton, H.J. (ed.) Canadian AI 2000. LNCS (LNAI), vol. 1822, pp. 40–52. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  6. 6.
    Fagan, J.: Automatic phrase indexing for document retrieval. In: Proceedings of the 10th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 1987, pp. 91–101. ACM, New York (1987)Google Scholar
  7. 7.
    Krapivin, M., Marchese, M., Yadrantsau, A., Liang, Y.: Unsupervised key-phrases extraction from scientific papers using domain and linguistic knowledge. In: Third International Conference on Digital Information Management, ICDIM 2008, pp. 105–112 (2008)Google Scholar
  8. 8.
    Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C., et al.: Domain-specific keyphrase extraction. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pp. 668–673. Morgan Kaufmann Publishers (1999)Google Scholar
  9. 9.
    Turney, P.D.: Learning algorithms for keyphrase extraction. Inf. Retrieval 2, 303–336 (2000)CrossRefGoogle Scholar
  10. 10.
    Hulth, A.: Improved automatic keyword extraction given more linguistic knowledge. In: Proceedings of the 2003 Conference on Empirical Methods in Natural Language Processing, EMNLP 2003, Stroudsburg, PA, USA, pp. 216–223. Association for Computational Linguistics (2003)Google Scholar
  11. 11.
    Witten, I. H., Paynter, G. W., Frank, E., Gutwin, C., Nevill-Manning, C.G.: Kea: practical automatic keyphrase extraction. In: Proceedings of the fourth ACM conference on Digital libraries, pp. 254–255. ACM (1999)Google Scholar
  12. 12.
    DAvanzo, E., Magnini, B., Vallin, A.: Keyphrase extraction for summarization purposes: the lake system at duc-2004. In: Proceedings of the 2004 Document Understanding Conference (2004)Google Scholar
  13. 13.
    Liu, Z., Li, P., Zheng, Y., Sun, M.: Clustering to find exemplar terms for keyphrase extraction. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume 1 - Volume 1. EMNLP 2009, Stroudsburg, PA, USA, pp. 257–266. Association for Computational Linguistics (2009)Google Scholar
  14. 14.
    Danilevsky, M., Wang, C., Desai, N., Guo, J., Han, J.: Kert: Automatic extraction and ranking of topical keyphrases from content-representative document titles (2013). arXiv preprint arXiv:1306.0271
  15. 15.
    Litvak, M., Last, M., Friedman, M.: A new approach to improving multilingual summarization using a genetic algorithm. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, pp. 927–936. Association for Computational Linguistics (2010)Google Scholar
  16. 16.
    Paukkeri, M.S., Nieminen, I.T., Pöllä, M., Honkela, T.: A language-independent approach to keyphrase extraction and evaluation. In: COLING (Posters), pp. 83–86 (2008)Google Scholar
  17. 17.
    El-Beltagy, S.R., Rafea, A.: Kp-miner: a keyphrase extraction system for english and arabic documents. Inf. Syst. 34, 132–144 (2009)CrossRefGoogle Scholar
  18. 18.
    Ferragina, P., Scaiella, U.: Tagme: on-the-fly annotation of short text fragments (by wikipedia entities). In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, CIKM 2010, pp. 1625–1628. ACM, New York (2010)Google Scholar
  19. 19.
    Pudota, N., Dattolo, A., Baruzzo, A., Ferrara, F., Tasso, C.: Automatic keyphrase extraction and ontology mining for content-based tag recommendation. Int. J. Intell. Syst. 25, 1158–1186 (2010)CrossRefzbMATHGoogle Scholar
  20. 20.
    De Nart, D., Tasso, C.: A domain independent double layered approach to keyphrase generation. In: WEBIST 2014 - Proceedings of the 10th International Conference on Web Information Systems and Technologies, pp. 305–312. SCITEPRESS Science and Technology Publications (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Dante Degl’Innocenti
    • 1
  • Dario De Nart
    • 1
  • Carlo Tasso
    • 1
  1. 1.Department of Mathematics and Computer Science, Artificial Intelligence LabUniversity of UdineUdineItaly

Personalised recommendations