Advertisement

Methods and Practices of Three-Way Decisions for Complex Problem Solving

  • Hong YuEmail author
  • Guoyin Wang
  • Baoqing Hu
  • Xiuyi Jia
  • Huaxiong Li
  • Tianrui Li
  • Decui Liang
  • Jiye Liang
  • Baoxiang Liu
  • Dun Liu
  • Jianmin Ma
  • Duoqian Miao
  • Fan Min
  • Jianjun Qi
  • Lin Shang
  • Jiucheng Xu
  • Hailong Yang
  • Jingtao Yao
  • Yiyu Yao
  • Hongying Zhang
  • Yanping Zhang
  • Yanhui Zhu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9436)

Abstract

A theory of three-way decisions is formulated based on the notions of three regions and associated actions for processing the three regions. Three-way decisions play a key role in everyday decision-making and have been widely used in many fields and disciplines. A group of Chinese researchers further investigated the theory of three-way decision and applied it in different domains. Their research results are highlighted in an edited Chinese book entitled “Three-way Decisions: Methods and Practices for Complex Problem Solving.” Based on the contributed chapters of the edited book, this paper introduces and reviews most recent studies on three-way decisions.

Notes

Acknowledgements

The authors would like to thank the organizers of IJCRS 2015 for inviting and encouraging them to present their results.

References

  1. 1.
    Chen, H.M., Li, T.R., Luo, C., Horng, S.J., Wang, G.Y.: A decision-theoretic rough set approach for dynamic data mining. IEEE Trans. Fuzzy Syst. (2015). doi: 10.1109/TFUZZ.2014.2387877CrossRefGoogle Scholar
  2. 2.
    Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Guo, M., Shang, L.: Selecting the appropriate fuzzy membership functions based on user-demand in fuzzy decision-theoretic rough set model. In: Proceedings of FUZZ-IEEE, pp. 1–8 (2013)Google Scholar
  4. 4.
    Guo, M., Shang, L.: Color image segmentation based on decision-theoretic rough set model and fuzzy C-means algorithm. In: Proceedings of FUZZ-IEEE, pp. 229–236 (2014)Google Scholar
  5. 5.
    Hu, B.Q.: Three-way decisions space and three-way decisions. Inf. Sci. 281, 21–52 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Jia, X.Y., Shang, L., Zhou, X.Z., Liang, J.Y., Miao, D.Q., Wang, G.Y., Li, T.R., Zhang, Y.P.: Theory of Three-Way Decisions and Application. Nanjing University Press, Nanjing, China (2012). (In Chinese)Google Scholar
  7. 7.
    Jia, X.Y., Li, W.W., Shang, L., Chen, J.J.: An optimization viewpoint of decision-theoretic rough set model. In: Yao, J.T., Ramanna, S., Wang, G.Y., Suraj, Z. (eds.) RSKT2011. LNCS, vol. 6954, pp. 457–465. Springer, Heidelberg (2011)Google Scholar
  8. 8.
    Jia, X.Y., Tang, Z.M., Liao, W.H., Shang, L.: On an optimization representation of decision-theoretic rough set model. Int. J. Approximate Reasoning 55, 156–166 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jia, X., Shang, L.: Three-way decisions versus two-way decisions on filtering spam email. In: Peters, J.F., Skowron, A., Li, T., Yang, Y., Yao, J.T., Nguyen, H.S. (eds.) Transactions on Rough Sets XVIII. LNCS, vol. 8449, pp. 69–91. Springer, Heidelberg (2014) Google Scholar
  10. 10.
    Li, W., Miao, D.Q., Wang, W.L.: Hierarchical rough decision theoretic framework for text classification. In: 9th IEEE International Conference on Cognitive Informatics, pp. 484–489. IEEE Press, New York (2010)Google Scholar
  11. 11.
    Li, F., Miao, D.Q., Liu, C.H.: An image segmentation algorithm based on decision-theoretic rough set model. CAAI Trans. Intell. Syst. 9(2), 143–147 (2014)Google Scholar
  12. 12.
    Li, H.X., Zhou, X.Z., Huang, B.: Cost-sensitive sequential three-way decisions. In: Liu, D., Li, T.R., Miao, D.Q., Wang, G.Y., Liang, J.Y. (eds.) Three-Way Decisions Granul. Comput., pp. 42–59. Science Press, Beijing (2013). (in chinese)Google Scholar
  13. 13.
    Li, H., Zhou, X., Huang, B., Liu, D.: Cost-sensitive three-way decision: a sequential strategy. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS, vol. 8171, pp. 325–337. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  14. 14.
    Li, H., Zhou, X., Zhao, J., Huang, B.: Cost-sensitive classification based on decision-theoretic rough set model. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) RSKT 2012. LNCS, vol. 7414, pp. 379–388. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  15. 15.
    Li, H.X., Zhou, X.Z., Zhao, J.B.: Cost-sensitive classification based on three-way decision-theoretic rough sets. Theory of Three-way Decisions and Application, pp. 34–45. Nanjing University Press (2012) (in Chinese)Google Scholar
  16. 16.
    Li, H.X., Zhou, X.Z.: Risk decision making based on decision-theoretic rough set: a three-way view decision model. Int. J. Comput. Intell. Syst. 4(1), 1–11 (2011)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Liu, D., Li, T.R., Miao, D.Q., Wang, G.Y., Liang, J.Y.: Three-Way Decisions and Granular Computing. Science Press, Beijing, China (2013). (In Chinese) Google Scholar
  18. 18.
    Li, H.X., Zhou, X.Z., Li, T.R., Wang, G.Y., Miao, D.Q., Yao, Y.Y.: Decision-Theoretic Rough Set Theory and Recent Progress. Science Press, Beijing, China (2011). (In Chinese) Google Scholar
  19. 19.
    Li, W., Huang, Z., Jia, X.: Two-phase classification based on three-way decisions. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS, vol. 8171, pp. 338–345. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  20. 20.
    Luo, C., Li, T., Chen, H.: Dynamic maintenance of three-way decision rules. In: Miao, D., Pedrycz, W., Slezak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS, vol. 8818, pp. 801–811. Springer, Heidelberg (2014) Google Scholar
  21. 21.
    Luo, C., Li, T.: Incremental three-way decisions with incomplete information. In: Cornelis, C., Kryszkiewicz, M., Ślȩzak, D., Ruiz, E.M., Bello, R., Shang, L. (eds.) RSCTC 2014. LNCS, vol. 8536, pp. 128–135. Springer, Heidelberg (2014) Google Scholar
  22. 22.
    Liu, D., Li, T.R., Ruan, D.: Probabilistic model criteria with decision-theoretic rough sets. Inf. Sci. 181, 3709–3722 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Liu, D., Li, T., Liang, D.: Three-way decisions in dynamic decision-theoretic rough sets. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS, vol. 8171, pp. 291–301. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  24. 24.
    Liu, D., Li, T.R., Li, H.X.: A multiple-category classification approach with decision-theoretic rough sets. Fundamenta Informaticae 115, 173–188 (2012)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Li, Y., Zhang, Z.H., Chen, W.B., Min, F.: Tdup: an approach to incremental mining of frequent itemsets with three-way-decision pattern updating. Int. J. Mach. Learn. Cybern. 1–13 (2015)Google Scholar
  26. 26.
    Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)CrossRefGoogle Scholar
  27. 27.
    Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991) zbMATHGoogle Scholar
  28. 28.
    Qi, J., Wei, L., Yao, Y.: Three-way formal concept analysis. In: Miao, D., Pedrycz, W., Slezak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS, vol. 8818, pp. 732–741. Springer, Heidelberg (2014) Google Scholar
  29. 29.
    Wang, B., Liang, J.: A novel intelligent multi-attribute three-way group sorting method based on dempster-shafer theory. In: Miao, D., Pedrycz, W., Slezak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS, vol. 8818, pp. 789–800. Springer, Heidelberg (2014) Google Scholar
  30. 30.
    Yang, H.L., Li, S.G., Wang, S.Y., Wang, J.: Bipolar fuzzy rough set model on two different universes and its application. Knowl. Based Syst. 35, 94–101 (2012)CrossRefGoogle Scholar
  31. 31.
    Yu, H., Wang, Y.: Three-way decisions method for overlapping clustering. In: Yao, J.T., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS, vol. 7413, pp. 277–286. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  32. 32.
    Yu, H., Liu, Z.G., Wang, G.Y.: An automatic method to determine the number of clusters using decision-theoretic rough set. Int. J. Approximate Reasoning 55(1), 101–115 (2014)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Yu, H., Jiao, P., Wang, G.Y., Yao, Y.Y.: Categorizing overlapping regions in clustering analysis using three-way decisions. In: Proceedings of IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 2, pp. 350–357 (2014)Google Scholar
  34. 34.
    Yu, H., Zhang, C., Hu, F.: An incremental clustering approach based on three-way decisions. In: Cornelis, C., Kryszkiewicz, M., Ślȩzak, D., Ruiz, E.M., Bello, R., Shang, L. (eds.) RSCTC 2014. LNCS, vol. 8536, pp. 152–159. Springer, Heidelberg (2014) Google Scholar
  35. 35.
    Yao, Y.: Granular computing and sequential three-way decisions. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS, vol. 8171, pp. 16–27. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  36. 36.
    Yao, Y.Y., Deng, X.F.: Sequential three-way decisions with probabilistic rough sets. In: Proceedings of IEEE ICCI*CC 2011, pp. 120–125. IEEE (2011)Google Scholar
  37. 37.
    Yao, Y.: An outline of a theory of three-way decisions. In: Yao, J.T., Yang, Y., Słowiński, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (eds.) RSCTC 2012. LNCS, vol. 7413, pp. 1–17. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  38. 38.
    Yao, Y.Y.: The two sides of the theory of rough sets. Knowl. Based Syst. 80, 67–77 (2015)CrossRefGoogle Scholar
  39. 39.
    Yao, Y.Y., Yu, H.: An introduction to three-way decisions. In: Yu, H., Wang, G.Y., Li, T.R., Liang, J.Y., Miao, D.Q., Yao, Y.Y. (eds.) Three-Way Decisions: Methods and Practices for Complex Problem Solving. Science Press, Beijing (2015). (In Chinese)Google Scholar
  40. 40.
    Yao, Y.Y.: Rough sets and three-way decisions. In: Ciucci, D., Wang, G.Y., Mitra, S., Wu, W.Z. (eds.) RSKT 2015. LNCS (LNA), vol. 9436, pp. 62–73. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  41. 41.
    Yu, H., Wang, G.Y., Li, T.R., Liang, J.Y., Miao, D.Q., Yao, Y.Y.: Three-Way Decisions: Methods and Practices for Complex Problem Solving. Science Press, Beijing, China (2015). (In Chinese)Google Scholar
  42. 42.
    Zhang, Y., Yao, J.T.: Determining three-way decision regions with gini coefficients. In: Cornelis, C., Kryszkiewicz, M., Ślȩzak, D., Ruiz, E.M., Bello, R., Shang, L. (eds.) RSCTC 2014. LNCS, vol. 8536, pp. 160–171. Springer, Heidelberg (2014) Google Scholar
  43. 43.
    Zhang, Y., Xing, H., Zou, H., Zhao, S., Wang, X.: A three-way decisions model based on constructive covering algorithm. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds.) RSKT 2013. LNCS, vol. 8171, pp. 346–353. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  44. 44.
    Zhang, Y., Zou, H., Chen, X., Wang, X., Tang, X., Zhao, S.: Cost-sensitive three-way decisions model based on CCA. In: Cornelis, C., Kryszkiewicz, M., Ślȩzak, D., Ruiz, E.M., Bello, R., Shang, L. (eds.) RSCTC 2014. LNCS, vol. 8536, pp. 172–180. Springer, Heidelberg (2014) Google Scholar
  45. 45.
    Zhang, X., Miao, D.: Three-way weighted entropies and three-way attribute reduction. In: Miao, D., Pedrycz, W., Slezak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS, vol. 8818, pp. 707–719. Springer, Heidelberg (2014) Google Scholar
  46. 46.
    Zhang, X.Y., Miao, D.Q.: Region-based quantitative and hierarchical attribute reduction in the two-category decision theoretic rough set model. Knowl. Based Syst. 71, 146–161 (2014)CrossRefGoogle Scholar
  47. 47.
    Zhang, X.Y., Miao, D.Q.: An expanded double-quantitative model regarding probabilities and grades and its hierarchical double-quantitative attribute reduction. Inf. Sci. 299, 312–336 (2015)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Zhang, X.Y., Miao, D.Q.: Reduction target structure-based hierarchical attribute reduction for two-category decision-theoretic rough sets. Inf. Sci. 277, 755–776 (2014)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Zhang, H.Y., Yang, S.Y.: Ranking Interval Sets Based on Inclusion Measures and Applications to Three-Way Decisions, ManuscriptGoogle Scholar
  50. 50.
    Zhang, H.Y., Zhang, W.X.: Entropy of interval-valued fuzzy sets based on distance and its relationship with similarity measure. Knowl. Based Syst. 22, 449–454 (2009)CrossRefGoogle Scholar
  51. 51.
    Zhang, H.Y., Zhang, W.X.: Hybrid monotonic fuzzy inclusion measure and its use in measuring similarity and distance between fuzzy sets. Fuzzy Sets Syst. 51, 56–70 (2009)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Zhang, Z.H., Li, Y., Chen, W.B., Min, F.: A three-way decision approach to incremental frequent itemsets mining. J. Inf. Comput. Sci. 11, 3399–3410 (2014)CrossRefGoogle Scholar
  53. 53.
    Zhou, Z., Zhao, W., Shang, L.: Sentiment analysis with automatically constructed lexicon and three-way decision. In: Miao, D., Pedrycz, W., Slezak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS, vol. 8818, pp. 777–788. Springer, Heidelberg (2014) Google Scholar
  54. 54.
    Zhao, L., Shang, L., Gao, Y., Yang, Y., Jia, X.Y.: Video behavior analysis using topic models and rough sets applications. IEEE Comput. Intell. Mag. 8(1), 56–67 (2013)CrossRefGoogle Scholar
  55. 55.
    Zhu, Y., Tian, H., Ma, J., Liu, J., Liang, T.: An integrated method for micro-blog subjective sentence identification based on three-way decisions and naive bayes. In: Miao, D., Pedrycz, W., Slezak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS, vol. 8818, pp. 844–855. Springer, Heidelberg (2014) Google Scholar
  56. 56.
    Zhang, Z., Wang, R.: Applying three-way decisions to sentiment classification with sentiment uncertainty. In: Miao, D., Pedrycz, W., Slezak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS, vol. 8818, pp. 720–731. Springer, Heidelberg (2014) Google Scholar
  57. 57.
    Zhang, L.B., Li, H.X., Zhou, X.Z., Huang, B., Shang, L.: Cost-sensitive sequential three-way decision for face recognition. In: Miao, D., Pedrycz, W., Ślȩzak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT2014. LNCS, vol. 8818, pp. 375–383. Springer, Switzerland (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (http://creativecommons.org/licenses/by-nc/2.5/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Hong Yu
    • 1
    Email author
  • Guoyin Wang
    • 1
  • Baoqing Hu
    • 2
  • Xiuyi Jia
    • 3
  • Huaxiong Li
    • 4
  • Tianrui Li
    • 5
  • Decui Liang
    • 6
  • Jiye Liang
    • 7
  • Baoxiang Liu
    • 8
  • Dun Liu
    • 5
  • Jianmin Ma
    • 9
  • Duoqian Miao
    • 10
  • Fan Min
    • 11
  • Jianjun Qi
    • 12
  • Lin Shang
    • 4
  • Jiucheng Xu
    • 13
  • Hailong Yang
    • 14
  • Jingtao Yao
    • 15
  • Yiyu Yao
    • 15
  • Hongying Zhang
    • 16
  • Yanping Zhang
    • 17
  • Yanhui Zhu
    • 18
  1. 1.Chongqing University of Posts and TelecommunicationsChongqingChina
  2. 2.Wuhan UniversityWuhanChina
  3. 3.Nanjing University of Science and TechnologyNanjingChina
  4. 4.Nanjing UniversityNanjingChina
  5. 5.Southwest Jiaotong UniversityChengduChina
  6. 6.University of Electronic Science and Technology of ChinaChengduChina
  7. 7.Taiyuan Normal UniversityTaiyuanChina
  8. 8.North China University of Science and TechnologyTangshanChina
  9. 9.Chang’an UniversityXi’anChina
  10. 10.Tongji UniversityShanghaiChina
  11. 11.Southwest Petroleum UniversityChengduChina
  12. 12.Xidian UniversityXi’anChina
  13. 13.Henan Normal UniversityXinxiangChina
  14. 14.Shaanxi Normal UniversityXi’anChina
  15. 15.University of ReginaReginaChina
  16. 16.Xi’an Jiaotong UniversityXi’anChina
  17. 17.Anhui UniversityHefeiChina
  18. 18.Hunan University of TechnologyZhuzhouChina

Personalised recommendations