Matrix Approaches for Variable Precision Rough Approximations

  • Guilong LiuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9436)


Many generalizations of variable precision rough set models(VPRS) have been proposed since Ziarko introduced VPRS. This paper proposes the concept of general VPRS approximations which unifies earlier definitions of variant VPRS and gives an efficient matrix formulae for computing approximations of VPRS. This formulae can simplify the calculation of approximations of VPRS.


Approximation Boolean matrix Precision degree Rough set Variable precision rough set 


  1. 1.
    Cheng, Y., Zhan, W., Wu, X., Zhang, Y.: Automatic determination about precision parameter value based on inclusion degree with variable precision rough set model. Inf. Sci. 290, 72–85 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Gong, Z.T., Sun, B.Z., Shao, Y.B., Chen, D.G., He, Q.: Variable precision rough set model based on general relation. In: Proceeding of the Third International Conference On Machine Learning And Cybernetics, Shanghai, pp. 2490–2494 (2014)Google Scholar
  3. 3.
    Inuiguchi, M., Yoshioka, Y., Kusunoki, Y.: Variable-precision dominance-based rough set approach and attribute reduction. Int. J. Approximate Reasoning 50, 1199–1214 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Liu, G.L.: The axiomatization of the rough set upper approximation operations. Fundamenta Informaticae 69, 331–342 (2006)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Liu, G.L.: Using one axiom to characterize rough set and fuzzy rough set approximations. Inf. Sci. 223, 285–296 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Liu, G.L.: The relationship among different covering approximations. Inf. Sci. 250, 178–183 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Liu, G.L., Sai, Y.: Invertible approximation operators of generalized rough sets and fuzzy rough sets. Inf. Sci. 180, 2221–2229 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Liu, J.N.K., Hua, Y., He, Y.: A set covering based approach to find the reduct of variable precision rough set. Inf. Sci. 275, 83–100 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Grassmann, W.K., Tremblay, J.P.: Logic and Discrete Mathematics. A computer Science Perspective. Prentice-Hall, Upper Saddle River (1996)Google Scholar
  10. 10.
    Mi, J.S., Wu, W.Z., Zhang, W.X.: Approaches to knowledge reduction based on variable precision rough set model. Inf. Sci. 159, 255–272 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mieszkowicz-Rolka, A., Rolka, L.: Variable precision rough rets in analysis of inconsistent decision tables. In: Rutkowski, L., Kacprzyk, J. (eds.) Adv. Soft Comput. Physica-Verlag, Heidelberg (2003)Google Scholar
  12. 12.
    Mieszkowicz-Rolka, A., Rolka, L.: Variable precision fuzzy rough sets. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 144–160. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  13. 13.
    Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11, 341–356 (1982)CrossRefGoogle Scholar
  14. 14.
    Pawlak, Z.: Rough Sets: Theoretical Aspects Of Reasoning About Data. Kluwer Academic Publishers, Boston (1991) CrossRefGoogle Scholar
  15. 15.
    Yao, Y., Mi, J., Li, Z.: A novel variable precision (\(\theta,\sigma \))-fuzzy rough set model based on fuzzy granules. Fuzzy Sets Syst. 236, 58–72 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Yao, Y.Y.: Constructive and algebraic methods of theory of rough Sets. Inf. Sci. 109, 21–47 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ziarko, W.: Variable precision rough set model. J. Comput. Syst. Sci. 46, 39–59 (1993)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Zhang, H.Y., Leung, Y., Zhou, L.: Variable-precision-dominance-based rough set approach to interval-valued information systems. Inf. Sci. 244, 75–91 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.School of Information ScienceBeijing Language and Culture UniversityBeijingChina

Personalised recommendations