A Multiclass Approach for Land-Cover Mapping by Using Multiple Data Sensors

  • Edemir Ferreira de AndradeJr.
  • Arnaldo de Albuquerque Araújo
  • Jefersson A. dos Santos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9423)


An usual way to acquire information about monitored objects or areas in earth surface is by using remote sensing images. These images can be obtained by different types of sensors (e.g., active and passive) and according to the sensor, distinct properties can be observed from the specified data. Typically, these sensors are specialized to encode one or few properties from the object (e.g. spectral and spatial properties), which makes necessary the use of diverse and different sensors to obtain complementary information. Given the amount of information collected, it is essential to use a suitable technique to combine the different features. In this work, we propose a new late fusion technique, a majority voting scheme, which is able to exploit the diversity of different types of features, extracted from different sensors. The new approach is evaluated in an urban classification scenario, achieving statistically better results in comparison with the proposed baselines.


Data fusion Remote sensing Late fusion Land-cover 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ghiyamat, A., Shafri, H.Z.: A review on hyperspectral remote sensing for homogeneous and heterogeneous forest biodiversity assessment. IJRS 31(7), 1837–1856 (2010)Google Scholar
  2. 2.
    Schmid, T., Koch, M., Gumuzzio, J.: Multisensor approach to determine changes of wetland characteristics in semiarid environments (central spain). IEEE Transactions on Geoscience and Remote Sensing 43(11), 2516–2525 (2005)CrossRefGoogle Scholar
  3. 3.
    Lanthier, Y., Bannari, A., Haboudane, D., Miller, J.R., Tremblay, N.: Hyperspectral data segmentation and classification in precision agriculture: a multi-scale analysis. In: IGARSS 2008, vol. 2, p. II-585. IEEE (2008)Google Scholar
  4. 4.
    Briottet, X., Boucher, Y., Dimmeler, A., et al.: Military applications of hyperspectral imagery. In: DSS, ISPIE, p. 62390B (2006)Google Scholar
  5. 5.
    Mura, M.D., Prasad, S., Pacifici, F., Gamba, P., Chanussot, J.: Challenges and opportunities of multimodality and data fusion in remote sensing. In: 2013 Proceedings of the 22nd European, EUSIPCO, pp. 106–110. IEEE (2014)Google Scholar
  6. 6.
    Li, J., et al.: Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning. TGRS on 51(2), 844–856 (2013)Google Scholar
  7. 7.
    Petitjean, F., Kurtz, C., Passat, N., Gançarski, P.: Spatio-temporal reasoning for the classification of satellite image time series. PRL 33(13), 1805–1815 (2012)CrossRefGoogle Scholar
  8. 8.
    Yang, C., Everitt, J.H., Du, Q., Luo, B., Chanussot, J.: Using high-resolution airborne and satellite imagery to assess crop growth and yield variability for precision agriculture. Proceedings of the IEEE 101(3), 582–592 (2013)CrossRefGoogle Scholar
  9. 9.
    Ouma, Y.O., Josaphat, S., Tateishi, R.: Multiscale remote sensing data segmentation and post-segmentation change detection based on logical modeling: Theoretical exposition and experimental results for forestland cover change analysis. Computers & Geosciences 34(7), 715–737 (2008)CrossRefGoogle Scholar
  10. 10.
    Wang, W.J., Zhao, Z.M., Zhu, H.Q.: Object-oriented change detection method based on multi-scale and multi-feature fusion. In: JURSE, pp. 1–5. IEEE (2009)Google Scholar
  11. 11.
    Gharbia, R., Azar, A.T., Baz, A.E., Hassanien, A.E.: Image fusion techniques in remote sensing. arXiv preprint arXiv:1403.5473 (2014)
  12. 12.
    Congalton, R.G., Green, K.: Assessing the accuracy of remotely sensed data: principles and practices. CRC Press (2008)Google Scholar
  13. 13.
    da Silva Torres, R., Falcão, A.X.: Content-based image retrieval: Theory and applications. RITA 13(2), 161–185 (2006)Google Scholar
  14. 14.
  15. 15.
    Lotufo, R., Falcao, A., Zampirolli, F.: Ift-watershed from gray-scale marker. In: SIBGRAPI, pp. 146–152 (2002)Google Scholar
  16. 16.
    dos Santos, J.A., Penatti, O.A.B., da Silva Torres, R.: Evaluating the potential of texture and color descriptors for remote sensing image retrieval and classification. In: VISAPP, Angers, France, May 2010Google Scholar
  17. 17.
    Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of Eugenics 7(2), 179–188 (1936)CrossRefGoogle Scholar
  18. 18.
    Jolliffe, I.: Principal component analysis. Wiley Online Library (2002)Google Scholar
  19. 19.
    Faria, F.A., Dos Santos, J.A., Rocha, A., Torres, R.D.S.: A framework for selection and fusion of pattern classifiers in multimedia recognition. PRL 39, 52–64 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Edemir Ferreira de AndradeJr.
    • 1
  • Arnaldo de Albuquerque Araújo
    • 1
  • Jefersson A. dos Santos
    • 1
  1. 1.Department of Computer ScienceUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil

Personalised recommendations