Fall Detection Algorithm Based on Thresholds and Residual Events

  • Fily M. Grisales-FrancoEmail author
  • Francisco Vargas
  • Álvaro Ángel Orozco
  • Mauricio A. Alvarez
  • German Castellanos-Dominguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9423)


Falling is a risk factor of vital importance in elderly adults, hence, the ability to detect falls automatically is necessary to minimize the risk of injury. In this work, we develop a fall detection algorithm based in inertial sensors due its scope of activity, portability, and low cost. This algorithm detects the fall across thresholds and residual events after that occurs, for this it filters the acceleration data through three filtering methodologies and by means of the amount of acceleration difference falls from Activities of Daily Living (ADLs). The algorithm is tested in a human activity and fall dataset, showing improves respect to performance compared with algorithms detailed in the literature.


Residual Event Inertial Sensor Acceleration Data Wearable Device Fall Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    de Alba, S.G., Clifford, M., Reyna, R., Palomera, E., Gonzalez, R.: Human fall detection using 3-axis accelerometer (2005)Google Scholar
  2. 2.
    Figo, D., Diniz, P.C., Ferreira, D.R., Cardoso, J.M.P.: Preprocessing techniques for context recognition from accelerometer data. Personal Ubiquitous Comput. 14(7), 645–662 (2010)CrossRefGoogle Scholar
  3. 3.
    Ke, S.R., Thuc, H.L.U., Lee, Y.J., Hwang, J.N., Yoo, J.H., Choi, K.H.: A review on video-based human activity recognition. Computers 2(2), 88–131 (2013)CrossRefGoogle Scholar
  4. 4.
    Li, Q., Stankovic, J., Hanson, M., Barth, A., Lach, J., Zhou, G.: Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. In: Sixth International Workshop on Wearable and Implantable Body Sensor Networks, BSN 2009, pp. 138–143 (2009)Google Scholar
  5. 5.
    Mubashir, M., Shao, L., Seed, L.: A survey on fall detection: Principles and approaches. Neurocomputing 100, 144–152 (2013). special issue: Behaviours in videoCrossRefGoogle Scholar
  6. 6.
    Chen, P.-Y., Selesnick, I.W.: Overlapping group shrinkage/thresholding and denoising. In: ASEE 2014 Zone I Conference, September 2012Google Scholar
  7. 7.
    Hwang, S.-Y., Ryu, M.-H., Yang, S.Y., Lee, N.B.: Fall detection with three-axis accelerometer and magnetometer in a smartphone. In: Computer Science and Technology, pp. 65–70 (2012)Google Scholar
  8. 8.
    Kazi, S.B., Sikander, S., Yousafzai, S.: Fall detection using single tri-axial accelerometer. In: ASEE 2014 Zone I Conference, April 2014Google Scholar
  9. 9.
    Tong, L., Song, Q., Ge, Y., Liu, M.: Hmm-based human fall detection and prediction method using tri-axial accelerometer. Sensors Journal, IEEE 13(5), 1849–1856 (2013)CrossRefGoogle Scholar
  10. 10.
    Torrent, J., Kostopoulos, P., Nunes, T., Salvi, K., Deriaz, M.: Increased fall detection accuracy in an accelerometer-based algorithm considering residual movement. In: ICPRAM 2015, 4th International Conference on Pattern Recognition Applications and Methods, January 2015Google Scholar
  11. 11.
    Vavoulas, G., Pediaditis, M., Spanakis, E., Tsiknakis, M.: The mobifall dataset: an initial evaluation of fall detection algorithms using smartphones. In: 2013 IEEE 13th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 1–4, November 2013Google Scholar
  12. 12.
    Yazar, A.: Multi-sensor based ambient assisted living (2013)Google Scholar
  13. 13.
    He, Y., Li, Y., Chuan, Y.: Falling-incident detection and alarm by smartphone with multimedia messaging service (mms). Computer Science & Communications, ETSN 1(1), 1–5 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Fily M. Grisales-Franco
    • 1
    Email author
  • Francisco Vargas
    • 2
  • Álvaro Ángel Orozco
    • 3
  • Mauricio A. Alvarez
    • 3
  • German Castellanos-Dominguez
    • 1
  1. 1.Signal Processing and Recognition GroupUniversidad Nacional de ColombiaManizalesColombia
  2. 2.SISTEMIC, Faculty of EngineeringUniversidad de Antioquia UdeAMedellínColombia
  3. 3.Grupo de Investigacion En AutomaticaUniversidad Tecnologica de PereiraPereiraColombia

Personalised recommendations