Blind Spectrum Sensing Based on Cyclostationary Feature Detection

  • Luis Miguel Gato
  • Liset Martínez
  • Jorge TorresEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9423)


Cognitive Radio has emerged as a promising technology to improve the spectrum utilization efficiency, where spectrum sensing is the key functionality to enable its deployment. This study proposes a cyclostationary feature detection method for signals with unknown parameters. We develop a rule of automatic decision based on the resulting hypothesis test and without statistical knowledge of the communication channel. Performance analysis and simulation results indicate that the obtained algorithm outperforms reported solutions under low SNR regime.


Cognitive radio Cyclostationarity Feature detection Blind spectrum sensing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haykin, S.: Cognitive Radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications 23(2), 201–220 (2005)CrossRefGoogle Scholar
  2. 2.
    McHenry, M.: Frequency agile spectrum access technologies. In: FCC Workshop on Cognitive Radio, pp. 1–4 (2003)Google Scholar
  3. 3.
    Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for Cognitive Radio applications. IEEE Communications Surveys and Tutorials 11(1), 116–130 (2009)CrossRefGoogle Scholar
  4. 4.
    Panaousis, E.: Optimizing the Channel Load Reporting Process in IEEE 802.11k-enabled WLANs. Dept. of Computer Science of the Athens University of Economics and Business (2008)Google Scholar
  5. 5.
    Shellhammer, S.: Spectrum sensing in IEEE 802.22. Qualcomm Inc., pp. 1–6 (2010)Google Scholar
  6. 6.
    Sklar, B.: Digital communications: Fundamental and applications, 2nd edn. Prentice Hall (2001)Google Scholar
  7. 7.
    Bagwari, A., Tomar, G.: Improved spectrum sensing technique using multiple energy detectors for Cognitive Radio networks. International Journal of Computer Applications 62(4), 11–21 (2013)CrossRefGoogle Scholar
  8. 8.
    Satheesh, A., et al.: Spectrum sensing techniques. A comparison between energy detector and cyclostationarity detector. In: International Conference on Control Communication and Computing (ICCC), pp. 388–393 (2013)Google Scholar
  9. 9.
    Bagwari, A.: Multiple energy detection vs. cyclostationary feature detection spectrum sensing technique. In: Fourth International Conference on Communication Systems and Network Technologies, pp. 178–181 (2014)Google Scholar
  10. 10.
    Bkassiny, M., Avery, K.: Blind cyclostationary feature detection based spectrum sensing for autonomous self-learning cognitive radios. In: IEEE ICC - Cognitive Radio and Networks Symposium, pp. 1507–1511 (2012)Google Scholar
  11. 11.
    Jang, W.: Blind Cyclostationary Spectrum Sensing in Cognitive Radios. IEEE Communications Letters 18(3), 393–396 (2014)CrossRefGoogle Scholar
  12. 12.
    Boyles, R., Gardner, W.: Cycloergodic properties of discrete parameter non-stationary stochastic processes. IEEE Transactions on Information Theory 29, 105–114 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gardner, W., Napolitano, A., Paura, L.: Cyclostationarity: Half a century of research. IEEE Signal Processing 86, 639–697 (2006)CrossRefzbMATHGoogle Scholar
  14. 14.
    Peebles, P.: Probability principles, random variables and random signals, 4th edn. Mc Graw Hill (2006)Google Scholar
  15. 15.
    Bkassiny, M., et al.: Wideband spectrum sensing and non-parametric signal clasiffication for autonomous self-learning cognitive radios. IEEE Transactions on Wireless Communications 11(7), 2596–2605 (2012)CrossRefGoogle Scholar
  16. 16.
    Gardner, W.: Signal interception: a unifying theoretical framework for feature detection. IEEE Transactions on Communications 36(8), 897–906 (1988)CrossRefGoogle Scholar
  17. 17.
    Kay, S.: Fundamentals of Statistical Signal Processing. Detection theory, vol. 2. Prentice-Hall (1987)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Luis Miguel Gato
    • 1
  • Liset Martínez
    • 1
  • Jorge Torres
    • 1
    Email author
  1. 1.Department of Telecommunications and TelematicsJosé Antonio Echeverría, Superior Polytechnic InstituteHavanaCuba

Personalised recommendations