A Study on Low-Cost Representations for Image Feature Extraction on Mobile Devices

  • Ramon F. PessoaEmail author
  • William R. Schwartz
  • Jefersson A. dos Santos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9423)


Due the limited battery life and wireless network bandwidth limitations, compact and fast (but also accurate) representations of image features are important for multimedia applications running on mobile devices. The main purpose of this work is to analyze the behavior of techniques for image feature extraction on mobile devices by considering the triple trade-off problem regarding effectiveness, efficiency, and compactness. We perform an extensive comparative study of state-of-the-art binary descriptors with bag of visual words. We employ a dense sampling strategy to select points for low-level feature extraction and implement four bag of visual words representations which use hard or soft assignments and two most commonly used pooling strategies: average and maximum. These mid-level representations are analyzed with and without lossless and lossy compression techniques. Experimental evaluation point out ORB and BRIEF descriptors with soft assignment and maximum pooling as the best representation in terms of effectiveness, efficiency, and compactness.


Mobile Device Compression Ratio Visual Word Lossy Compression Lossless Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cisco. Cisco visual networking index: Global mobile data traffic forecast update, 20142019, Tech. Rep., (2015)Google Scholar
  2. 2.
    Girod, B., Chandrasekhar, V., Chen, D.M., Cheung, N.-M., Grzeszczuk, R., Reznik, Y., Takacs, G., Tsai, S.S., Vedantham, R.: Mobile visual search. Signal Processing Magazine 28(4), 61–76 (2011)CrossRefGoogle Scholar
  3. 3.
    Ascenso, J., Pereira, F.: Lossless compression of binary image descriptors for visual sensor networks. In: DSP, pp. 1–8 (2013)Google Scholar
  4. 4.
    Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details: an evaluation of recent feature encoding methods (2011)Google Scholar
  5. 5.
    Penatti, O., Silva, F.B., Valle, E., Gouet-Brunet, V., Torres, RdS: Visual word spatial arrangement for image retrieval and classification. Pattern Recognition 47(2), 705–720 (2014)CrossRefGoogle Scholar
  6. 6.
    Trzcinski, T., Christoudias, M., Fua, P., Lepetit, V.: Boosting binary keypoint descriptors. In: CVPR, pp. 2874–2881 (2013)Google Scholar
  7. 7.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) Computer Vision – ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: ICCV, pp. 2564–2571 (2011)Google Scholar
  9. 9.
    Leutenegger, S., Chli, M., Siegwart, R.Y.: Brisk: binary robust invariant scalable keypoints. In: ICCV, pp. 2548–2555 (2011)Google Scholar
  10. 10.
    Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: CVPR, pp. 510–517 (2012)Google Scholar
  11. 11.
    Silva de Moura, E., Navarro, G., Ziviani, N., Baeza-Yates, R.: Fast and flexible word searching on compressed text. ACM Transactions on Information Systems 18(2), 113–139 (2000)CrossRefGoogle Scholar
  12. 12.
    Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Computer Vision and Image Understanding 106(1), 59–70 (2007)CrossRefGoogle Scholar
  13. 13.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC 2007) Results.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ramon F. Pessoa
    • 1
    Email author
  • William R. Schwartz
    • 1
  • Jefersson A. dos Santos
    • 1
  1. 1.Department of Computer ScienceUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil

Personalised recommendations