Advertisement

Optimizing the Data Adaptive Dual Domain Denoising Algorithm

  • Nicola Pierazzo
  • Jean-Michel Morel
  • Gabriele Facciolo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9423)

Abstract

This paper presents two new strategies that greatly improve the execution time of the DA3D Algorithm, a new denoising algorithm with state-of-the-art results. First, the weight map used in DA3D is implemented as a quad-tree. This greatly reduces the time needed to search the minimum weight, greatly reducing the overall computation time. Second, a simple but effective tiling strategy is shown to work in order to allow the parallel execution of the algorithm. This allows the implementation of DA3D in a parallel architecture. Both these improvements do not affect the quality of the output.

Keywords

Image denoising Quad-tree Parallel processing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. SIAM Mult. Model. Simul. 4(2) (2006)Google Scholar
  2. 2.
    Burger, H.C., Schuler, C., Harmeling, S.: Learning how to combine internal and external denoising methods. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 121–130. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  3. 3.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3d transform-domain collaborative filtering. IEEE TIP 16(82) (2007)Google Scholar
  4. 4.
    Dong, W., Shi, G., Li, X.: Nonlocal image restoration with bilateral variance estimation: A low-rank approach. IEEE TIP 22(2) (2013)Google Scholar
  5. 5.
    Donoho, D.L., Johnstone, J.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika (1994)Google Scholar
  6. 6.
    Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE TIP 15(12) (2006)Google Scholar
  7. 7.
    Gnanadurai, D., Sadasivam, V.: Image denoising using double density wavelet transform based adaptive thresholding technique. IJWMIP 03(01) (2005)Google Scholar
  8. 8.
    Knaus, C.: Dual-domain image denoising. Ph.D. thesis, Diss. Univ. Bern (2013)Google Scholar
  9. 9.
    Knaus, C., Zwicker, M.: Dual-domain image denoising. IEEE ICIP (2013)Google Scholar
  10. 10.
    Knaus, C., Zwicker, M.: Progressive image denoising. IEEE TIP 23(7) (2014)Google Scholar
  11. 11.
    Lebrun, M., Buades, A., Morel, J.M.: Implementation of the “non-local bayes” (NL-bayes) image denoising algorithm. Image Processing On Line (2013)Google Scholar
  12. 12.
    Levin, A., Nadler, B.: Natural image denoising: Optimality and inherent bounds. IEEE CVPR (2011)Google Scholar
  13. 13.
    Levin, A., Nadler, B., Durand, F., Freeman, W.T.: Patch complexity, finite pixel correlations and optimal denoising. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part V. LNCS, vol. 7576, pp. 73–86. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  14. 14.
    Li, H.Q., Wang, S.Q., Deng, C.Z.: New image denoising method based wavelet and curvelet transform. WASE ICIE 1 (2009)Google Scholar
  15. 15.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. IEEE ICCV (2009)Google Scholar
  16. 16.
    Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. SIAM Mult. Model. Simul. 7(1) (2008)Google Scholar
  17. 17.
    Mosseri, I., Zontak, M., Irani, M.: Combining the power of internal and external denoising. IEEE ICCP (2013)Google Scholar
  18. 18.
    Motwani, M.C., Gadiya, M.C., Motwani Jr., R.C., Harris, F.C.: Survey of image denoising techniques. GSPX (2004)Google Scholar
  19. 19.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE TPAMI 12(7) (July 1990)Google Scholar
  20. 20.
    Pierazzo, N., Lebrun, M., Rais, M., Morel, J.M., Facciolo, G.: Non-local dual image denoising. IEEE ICIP (2014)Google Scholar
  21. 21.
    Pierazzo, N., Rais, M.: Boosting shotgun denoising by patch normalization. IEEE ICIP (2013)Google Scholar
  22. 22.
    Pierazzo, N., Rais, M., Morel, J.M., Facciolo, G.: DA3D: Fast and data adaptive dual domain denoising. IEEE ICIP (2015)Google Scholar
  23. 23.
    Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE TIP (2003)Google Scholar
  24. 24.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60 (1992)Google Scholar
  25. 25.
    Starck, J.L., Candès, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE TIP 11(6) (2002)Google Scholar
  26. 26.
    Talebi, H., Milanfar, P.: Global image denoising. IEEE TIP 23(2) (2014)Google Scholar
  27. 27.
    Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. IEEE ICCV (1998)Google Scholar
  28. 28.
    Wiener, N.: Extrapolation, Interpolation, and Smoothing of Stationary Time Series. The MIT Press (1964)Google Scholar
  29. 29.
    Yu, G., Sapiro, G., Mallat, S.: Image modeling and enhancement via structured sparse model selection. IEEE ICIP (2010)Google Scholar
  30. 30.
    Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. IEEE ICCV (November 2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nicola Pierazzo
    • 1
  • Jean-Michel Morel
    • 1
  • Gabriele Facciolo
    • 1
    • 2
  1. 1.CMLAÉcole Normale Supérieure de CachanCachanFrance
  2. 2.IMAGINE/LIGMÉcole Nationale des Ponts et ChausséesChamps-sur-MarneFrance

Personalised recommendations