Assessing the Distinctiveness and Representativeness of Visual Vocabularies

  • Leonardo ChangEmail author
  • Airel Pérez-Suárez
  • Máximo Rodríguez-Collada
  • José Hernández-Palancar
  • Miguel Arias-Estrada
  • Luis Enrique Sucar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9423)


Bag of Visual Words is one of the most widely used approaches for representing images for object categorization; however, it has several drawbacks. In this paper, we propose three properties and their corresponding quantitative evaluation measures to assess the ability of a visual word to represent and discriminate an object class. Additionally, we also introduce two methods for ranking and filtering visual vocabularies and a soft weighting method for BoW image representation. Experiments conducted on the Caltech-101 dataset showed the improvement introduced by our proposals, which obtained the best classification results for the highest compression rates when compared with a state-of-the-art mutual information based method for feature selection.


Bag of visual words Visual vocabulary Object categorization Object recognition 


  1. 1.
    Kesorn, K., Poslad, S.: An enhanced bag-of-visual word vector space model to represent visual content in athletics images. IEEE Transactions on Multimedia 14(1), 211–222 (2012)CrossRefGoogle Scholar
  2. 2.
    Lopez-Sastre, R., Tuytelaars, T., Acevedo-Rodriguez, F., Maldonado-Bascon, S.: Towards a more discriminative and semantic visual vocabulary. Computer Vision and Image Understanding 115(3), 415–425 (2011)CrossRefGoogle Scholar
  3. 3.
    Jiu, M., Wolf, C., Garcia, C., Baskurt, A.: Supervised learning and codebook optimization for bag of words models. Cognitive Computation 4, 409–419 (2012)CrossRefGoogle Scholar
  4. 4.
    Chang, L., Duarte, M.M., Sucar, L.E., Morales, E.F.: A bayesian approach for object classification based on clusters of sift local features. Expert Systems with Applications 39, 1679–1686 (2012)CrossRefGoogle Scholar
  5. 5.
    Jiang, Y.G., Ngo, C.W., Yang, J.: Towards optimal bag-of-features for object categorization and semantic video retrieval. In: CVIR, pp. 494–501. ACM (2007)Google Scholar
  6. 6.
    Zhang, Y., Wu, J., Cai, J.: Compact representation for image classification: To choose or to compress? In: CVPR 2014 (2014)Google Scholar
  7. 7.
    Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Pattern Analysis and Machine Intellingence 33(1), 117–128 (2011)CrossRefGoogle Scholar
  8. 8.
    Gong, Y., Kumar, S., Rowley, H.A., Lazebnik, S.: Learning binary codes for high-dimensional data using bilinear projections. In: CVPR 2013 (2013)Google Scholar
  9. 9.
    Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Comput. Vis. Image Underst. 106(1), 59–70 (2007)CrossRefGoogle Scholar
  10. 10.
    Emerson, P.: The original borda count and partial voting. Social Choice and Welfare 40(2), 353–358 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Moulin, C., Barat, C., Ducottet, C.: Fusion of tf.idf weighted bag of visual features for image classification. In: Qunot, G. (ed.) CBMI, pp. 1–6. IEEE (2010)Google Scholar
  12. 12.
    Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests and ferns. In: ICCV, vol. 23(1), pp. 1–8 (2007)Google Scholar
  13. 13.
    Elkan, C.: Using the triangle inequality to accelerate k-means. In: Fawcett, T., Mishra, N., (eds.) ICML, pp. 147–153. AAAI Press (2003)Google Scholar
  14. 14.
    Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. Pattern Analysis and Machine Intellingence 34(3) (2011)Google Scholar
  15. 15.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: CVPR, pp. 2169–2178 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Leonardo Chang
    • 1
    • 2
    Email author
  • Airel Pérez-Suárez
    • 1
  • Máximo Rodríguez-Collada
    • 1
  • José Hernández-Palancar
    • 1
  • Miguel Arias-Estrada
    • 2
  • Luis Enrique Sucar
    • 2
  1. 1.Advanced Technologies Application Center (CENATAV)HavanaCuba
  2. 2.Instituto Nacional de AstrofísicaÓptica y Electrónica (INAOE)PueblaMexico

Personalised recommendations