Graph Fusion Using Global Descriptors for Image Retrieval

  • Tomás MardonesEmail author
  • Héctor Allende
  • Claudio Moraga
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9423)


This paper addresses the problem of content-based image retrieval in a large-scale setting. Recently several graph-based image retrieval systems to fuse different representations have been proposed with excellent results, however most of them use at least one representation based on local descriptors that does not scale very well with the number the images, hurting time and memory requirements as the database grows. This motivated us to investigate the possibility to retain the performance of local descriptor methods while using only global descriptions of the image. Thus, we propose a graph-based query fusion approach -where we combine several representations based on aggregating local descriptors such as Fisher Vectors- using distance and neighborhood information to evaluate the individual importance of each element in every query. Performance is analyzed in different time and memory constrained scenarios. Experiments are performed on 3 public datasets: the UKBench, Holidays and MIRFLICKR-1M, obtaining state of the art performance.


Fisher vector Graph fusion Large scale image retrieval Global descriptors 


  1. 1.
    Delvinioti, A., Jégou, H., Amsaleg, L., Houle, M.E.: Image retrieval with reciprocal and shared nearest neighbors. In: Proc. International Conference on Computer Vision Theory and Applications, pp. 321–328, January 2014Google Scholar
  2. 2.
    Ge, T., He, K., Ke, Q., Sun, J.: Optimized product quantization. IEEE Trans. Pattern Analysis and Machine Intelligence 36(4), 744–755 (2014)CrossRefGoogle Scholar
  3. 3.
    Gordo, A., Rodriguez-Serrano, J.A., Perronnin, F., Valveny, E.: Leveraging category-level labels for instance-level image retrieval. In: Proc. CVPR, pp. 3045–3052 (2012)Google Scholar
  4. 4.
    Huiskes, M.J., Thomee, B., Lew, M.S.: New trends and ideas in visual concept detection: the MIR Flickr retrieval evaluation initiative. In: Proc. ACM International Conference on Multimedia Information Retrieval, pp. 527–536. ACM (2010)Google Scholar
  5. 5.
    Jegou, H., Douze, M., Schmid, C.: Hamming embedding and weak geometric consistency for large scale image search. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 304–317. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  6. 6.
    Jégou, H., Douze, M., Schmid, C.: Exploiting descriptor distances for precise image search. Research report, INRIA, Jun 2011Google Scholar
  7. 7.
    Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P., Schmid, C.: Aggregating local image descriptors into compact codes. IEEE Trans. Pattern Analysis and Machine Intelligence 34(9), 1704–1716 (2012)CrossRefGoogle Scholar
  8. 8.
    Mardones, T., Allende, H., Moraga, C.: Combining fisher vectors in image retrieval using different sampling techniques. In: Proc. International Conference on Pattern Recognition Applications and Methods, pp. 128–135, January 2015Google Scholar
  9. 9.
    Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proc. CVPR, pp. 2161–2168 (2006)Google Scholar
  10. 10.
    Perdoch, M., Chum, O., Matas, J.: Efficient representation of local geometry for large scale object retrieval. In: Proc. CVPR, pp. 9–16, Jun 2009Google Scholar
  11. 11.
    Qin, D., Gammeter, S., Bossard, L., Quack, T., Van Gool, L.: Hello neighbor: Accurate object retrieval with k-reciprocal nearest neighbors. In: Proc. CVPR, pp. 777–784, Jun 2011Google Scholar
  12. 12.
    Sivic, J., Zisserman, A.: Efficient visual search of videos cast as text retrieval. IEEE Trans. Pattern Analysis and Machine Intelligence 31(4), 591–606 (2009)CrossRefGoogle Scholar
  13. 13.
    Tolias, G., Avrithis, Y., Jégou, H.: To aggregate or not to aggregate: selective match kernels for image search. In: Proc. IEEE ICCV, pp. 1401–1408 (2013)Google Scholar
  14. 14.
    Tolias, G., Furon, T., Jégou, H.: Orientation covariant aggregation of local descriptors with embeddings. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VI. LNCS, vol. 8694, pp. 382–397. Springer, Heidelberg (2014) Google Scholar
  15. 15.
    Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: A survey. Foundations and Trends in Computer Graphics and Vision 3(3), 177–280 (2008)CrossRefGoogle Scholar
  16. 16.
    Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale orderless pooling of deep convolutional activation features. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VII. LNCS, vol. 8695, pp. 392–407. Springer, Heidelberg (2014) Google Scholar
  17. 17.
    Zhang, S., Yang, M., Cour, T., Yu, K., Metaxas, D.: Query specific rank fusion for image retrieval. IEEE Trans. Pattern Analysis and Machine Intelligence 37(4), 803–815 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tomás Mardones
    • 1
    Email author
  • Héctor Allende
    • 1
  • Claudio Moraga
    • 2
    • 3
  1. 1.Universidad Técnica Federico Santa MaríaValparaísoChile
  2. 2.European Centre for Soft ComputingMieresSpain
  3. 3.Faculty of Computer ScienceTU Dortmund UniversityDortmundGermany

Personalised recommendations