Advertisement

Two Applications of RGB-D Descriptors in Computer Vision

  • Mariano BianchiEmail author
  • Nadia Heredia
  • Francisco Gómez-Fernández
  • Alvaro Pardo
  • Marta Mejail
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9423)

Abstract

In this paper an evaluation of RGB-D descriptors in the context of Object Recognition and Object Tracking is presented. Spin-images, CSHOT and ECV context descriptors were used for detecting objects in point clouds. Empirical evaluation over a dataset with ground truth shows that shape is the most important cue for RGB-D descriptors. However, texture helps discrimination when objects are large or have little structure.

Keywords

RGB-D Object recognition Tracking Point clouds 

References

  1. 1.
    Alexandre, L.A.: 3D descriptors for object and category recognition: a comparative evaluation. In: IEEE/SRJ Int. Conf. on Intelligent Robots and Systems (IROS), Workshop on Color-Depth Camera Fusion (2012)Google Scholar
  2. 2.
    Besl, P., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  3. 3.
    Bo, L., Ren, X., Fox, D.: Depth kernel descriptors for object recognition. In: Intelligent Robots and Systems (IROS), Int. Conf. on. pp. 821–826 (2011)Google Scholar
  4. 4.
    Buch, A.G., Kraft, D., Kamarainen, J.K., Petersen, H.G., Kruger, N.: Pose estimation using local structure-specific shape and appearance context. In: Int. Conf. Robotics and Automation (ICRA), pp. 2080–2087 (2013)Google Scholar
  5. 5.
    Drummond, T., Cipolla, R.: Real-time tracking of complex structures with on-line camera calibration. In: BMVC, pp. 1–10 (1999)Google Scholar
  6. 6.
    Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. Jour. of Computer Vision 88(2), 303–338 (2010)CrossRefGoogle Scholar
  7. 7.
    Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. on Pattern Analysis and Machine Intelligence 21(5), 433–449 (1999)Google Scholar
  8. 8.
    Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view rgb-d object dataset. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1817–1824 (2011)Google Scholar
  9. 9.
    Nascimento, E.R., Oliveira, G.L., Campos, M.F.M., Vieira, A.W., Schwartz, W.R.: Brand: A robust appearance and depth descriptor for rgb-d images. In: Int. Conf. on. Intelligent Robots and Systems (IROS), pp. 1720–1726 (2012)Google Scholar
  10. 10.
    Park, Y., Lepetit, V., Woo, W.: Texture-less object tracking with online training using an rgb-d camera. In: Int. Symp. Mixed and Augmented Reality (ISMAR), pp. 121–126 (2011)Google Scholar
  11. 11.
    Tombari, F., Salti, S., Di Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part III. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  12. 12.
    Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision 13(2), 119–152 (1994)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Mariano Bianchi
    • 1
    Email author
  • Nadia Heredia
    • 1
  • Francisco Gómez-Fernández
    • 1
  • Alvaro Pardo
    • 2
  • Marta Mejail
    • 1
  1. 1.University of Buenos AiresBuenos AiresArgentina
  2. 2.Universidad Católica Del UruguayMontevideoUruguay

Personalised recommendations