Model-Based Requirements Engineering for Data Warehouses: From Multidimensional Modelling to KPI Monitoring

  • Azadeh NasiriEmail author
  • Robert Wrembel
  • Esteban Zimányi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9382)


A Data Warehouse (DW) is one of the main components of every BI system. It has been convincingly argued that the success of BI projects can be strongly affected by the Requirements Engineering (RE) phase, when the requirements of a DW are captured. Multiple RE methods for DWs have been proposed which have goal models in the core of their approach. Existing methods cover RE up to the static part of a DW, where the Multidimensional (MD) model is obtained. However, the RE for the dynamic part of the DW, where the requirements of operations on the DW are captured, has been neglected in the literature. In this paper, we propose a RE method, covering both the static and the dynamic part of a DW in an integrated manner. Our approach is to use the concept of a Key Performance Indicator (KPI). We initially use KPIs as the main driver to obtain the MD model and then discuss how decision-makers analyse them in order to measure the success of an organisation. In our method, the goal model from the i* framework was extended with UML use case diagrams.


Data warehouse Requirements Engineering Key performance indicators 


  1. 1.
    Barone, D., Jiang, L., Amyot, D., Mylopoulos, J.: Composite Indicators for Business Intelligence. In: Jeusfeld, M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 448–458. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  2. 2.
    Bonifati, A., Cattaneo, F., Ceri, S., Fuggetta, A., Paraboschi, S.: Designing data marts for data warehouses. ACM Trans. Softw. Eng. Methodol. 10(4), 452–483 (2001)CrossRefGoogle Scholar
  3. 3.
    Gallardo, J., Giacaman, G., Meneses, C., Marbán, Ó.: Framework for decisional business modeling and requirements modeling in data mining projects. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 268–275. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  4. 4.
    Ghezzi, C., Jazayeri, M., Mandrioli, D.: GRAnD: a goal-oriented approach to requirement analysis in data warehouses. Decis. Support Syst. 45(1), 4–21 (2008)CrossRefGoogle Scholar
  5. 5.
    Malinowski, E., Zimányi, E.: Requirements specification and conceptual modeling for spatial data warehouses. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp. 1616–1625. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  6. 6.
    Mazón, J.-N., Pardillo, J., Trujillo, J.: A model-driven goal-oriented requirement engineering approach for data warehouses. In: Hainaut, J.-L., et al. (eds.) ER Workshops 2007. LNCS, vol. 4802, pp. 255–264. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  7. 7.
    Mazón, J., Trujillo, J., Lechtenbörger, J.: Reconciling requirement-driven data warehouses with data sources via multidimensional normal forms. Data Knowl. Eng. 63(3), 725–751 (2007)CrossRefGoogle Scholar
  8. 8.
    Mazon, J., Trujillo, J., Serrano, M., Piattini, M.: Designing data warehouses: from business requirement analysis to multidimensional modeling. In: Proceedings of International Conference on Requirements Engineering for Business Need and IT Alignment, pp. 44–53 (2005)Google Scholar
  9. 9.
    Nasiri, A., Zimányi, E., Wrembel, R.: Requirements engineering for data warehouses. In: Proceedings of Conference on Journées Francophones Sur Les Entrepôts de Données et l’Analyse en ligne (2015)Google Scholar
  10. 10.
    Prakash, N., Bhardwaj, H.: Early information requirements engineering for target driven data warehouse development. In: Sandkuhl, K., Seigerroth, U., Stirna, J. (eds.) The Practice of Enterprise Modeling. LNBIP, vol. 134, pp. 188–202. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  11. 11.
    Silva, V., Mazón, J., Garrigós, I., Trujillo, J., Mylopoulos, J.: Monitoring strategic goals in data warehouses with awareness requirements. In: ACM Symposium on Applied Computing, pp. 1075–1082. ACM (2012)Google Scholar
  12. 12.
    Singh, Y., Gosain, A., Kumar, M.: From early requirements to late requirements modeling for a data warehouse. In: Proceedings of IEEE International Joint Conference on INC, IMS and IDC, pp. 798–804 (2009)Google Scholar
  13. 13.
    Stroh, D., Winter, R., Wortmann, F.: Method support of information requirements analysis for analytical information systems. Bus. Inf. Syst. Eng. 3(1), 33–43 (2011)CrossRefGoogle Scholar
  14. 14.
    Vaisman, I., Zimányi, E.: Data Warehouse Systems: Design and Implementation. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  15. 15.
    Winter, R., Strauch, B.: A method for demand-driven information requirements analysis in data warehousing projects. In: Proceedings of IEEE International Conference on System Sciences, pp. 9–18 (2003)Google Scholar
  16. 16.
    Winter, R., Strauch, B.: Information requirements engineering for data warehouse systems. In: ACM Symposium on Applied, Computing, pp. 1359–1365 (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Azadeh Nasiri
    • 1
    • 2
    Email author
  • Robert Wrembel
    • 1
  • Esteban Zimányi
    • 2
  1. 1.Institute of Computing SciencePoznan University of TechnologyPoznanPoland
  2. 2.Department of Computer and Decision EngineeringUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations