A Hybrid Algorithm for DAG Application Scheduling on Computational Grids

  • Lyes Bouali
  • Karima Oukfif
  • Samia Bouzefrane
  • Fatima Oulebsir-Boumghar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9395)

Abstract

In the late three decades, grid computing has emerged as a new field providing a high computing performance to solve larger scale computational demands. Because Directed Acyclic Graph (DAG) application scheduling in a distributed environment is a NP-Complete problem, meta-heuristics are introduced to solve this issue. In this paper, we propose to hybridize two well-known heuristics. The first one is the Heterogeneous Earliest Finish Time (HEFT) heuristic which determines a static scheduling for a DAG in a heterogeneous environment. The second one is Particle Swarm Optimization (PSO) which is a stochastic meta-heuristic used to solve optimization problems. This hybridization aims to minimize the makespan (i.e., overall completion time) of all the tasks within the DAG. The experimental results that have been conducted under hybridization show that this approach improves the scheduling in terms of completion time compared to existing algorithms such as HEFT.

Keywords

Grid computing Task scheduling Directed acyclic graph Heterogeneous earliest finish time algorithm Particle swarm optimization algorithm Makespan 

References

  1. 1.
    Cafaro, M., Aloisio, G.: Grids, Clouds, and Virtualization. 1st edn., Spring (2011). ISBN 978-0-85729-049-6Google Scholar
  2. 2.
    Dong, F., Akl, S.G.: Scheduling Algorithms for Grid Computing: State of the Art and Open Problems. Technical report No. 2006-504. School of Computing, Queen’s University, Kingston, OntarioGoogle Scholar
  3. 3.
    Casavant, T., Kuhl, J.: A taxonomie of scheduling in general-purpose distributed computing systems. IEEE Trans. Softw. Eng. 14(2), 141–154 (1988)CrossRefGoogle Scholar
  4. 4.
    Braun, R., Siegel, H., Beck, N., Boloni, L., Maheswaran, M., Reuther, A., Robertson, J., Theys, M., Yao, B., Hensgen, D., Freund, R.: A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. J. Parallel Distrib. Comput. 61(6), 810–837 (2001)CrossRefMATHGoogle Scholar
  5. 5.
    Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Comput. Surv. 31(4), 406–471 (1999)CrossRefGoogle Scholar
  6. 6.
    Yu, J., Buyya, R., Ramamohanarao, K.: Workflow scheduling algorithms for grid computing. In: Xhafa, F., Abraham, A. (eds.) Metaheuristics for Scheduling in Distributed Computing Environments. Studies in Computational Intelligence, vol. 146, pp. 173–214. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Topcuoglu, H., Hariri, S., Wu, M.: Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002)CrossRefGoogle Scholar
  8. 8.
    Radulescu, A., van Gemund, A.J.C.: On the complexity of list scheduling algorithms for distributed-memory systems. In: Technical report No. 1-68340-44(1999)02, January 1999Google Scholar
  9. 9.
    Kwok, Y., Ahmad, I.: Dynamic critical-path scheduling: an effective technique for allocating task graphs to muliprocessors. IEEE Trans. Parallel Distrib. Syst. 7(5), 506–521 (1996)CrossRefGoogle Scholar
  10. 10.
    Sih, G.C., Lee, E.A.: A compile-time scheduling heuristic for interconnection-constrained heterogeneous processor architectures. IEEE Trans. Parallel Distrib. Syst. 4(2), 75–87 (1993)CrossRefGoogle Scholar
  11. 11.
    Ma, T., Buyya, R.: Critical-path and priority based algorithms for scheduling workflows with parameter sweep tasks on global grids. In: IEEE International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD 2005) (2005)Google Scholar
  12. 12.
    Yang, T., Gerasoulis, A.: DSC: scheduling parallel tasks on an unbounded number of processors. IEEE Trans. Parallel Distrib. Syst. 5(9), 951–967 (1994)CrossRefGoogle Scholar
  13. 13.
    Liou, J., Palis, M.A.: An efficient clustering heuristic for scheduling DAGs on multiprocessors. In: Proceedings of the Symposium Parallel and Distributed Processing (1996)Google Scholar
  14. 14.
    Boeres, C., Filho, J.V., Rebello, V.E.F: A cluster-based strategy for scheduling task on heterogeneous processors. In: IEEE Symposium on Computer Architecture and High Performance Computing, pp. 214–221, October 2004Google Scholar
  15. 15.
    Kruatrachue, B., Lewis, T.: Grain size determination for parallel processing. IEEE Softw. 5, 23–32 (1988)CrossRefGoogle Scholar
  16. 16.
    Ahmad, I., Kwok, Y.-K.: A new approach to scheduling parallel programs using task duplication. In: IEEE International Conference on Parallel Processing, vol. 2 (1994)Google Scholar
  17. 17.
    Darbha, S., Agrawal, D.P.: Optimal scheduling algorithm for distributed-memory machines. IEEE Trans. Parallel Distrib. Syst. 9(1), 87–95 (1998)CrossRefGoogle Scholar
  18. 18.
    Chung, Y.-C., Ranka, S.: Application and performance analysis of a compile-time optimization approach for list scheduling algorithms on distributed-memory multiprocessors. In: Proceedings of the Supercomputing, pp. 512–521 (1992)Google Scholar
  19. 19.
    Bajaj, R., Agrawal, D.P.: Improving scheduling of tasks in a heterogeneous environment. IEEE Trans. Parallel Distrib. Syst. 15(2), 107–118 (2004)CrossRefGoogle Scholar
  20. 20.
    Wang, L., Siegel, H.J., Roychowdhury, V.P., Maciejewski, A.A.: Task matching and scheduling in heterogeneous computing environments using a genetic-algorithm-based approach. J. Parallel Distrib. Comput. 47(1), 8–22 (1997)CrossRefGoogle Scholar
  21. 21.
    Martino, V.D., Mililotti, M.: Sub optimal scheduling in a grid using genetic algorithms. Parallel Comput. 30, 553–565 (2004)CrossRefGoogle Scholar
  22. 22.
    Gao, Y., Rong, H., Huang, J.Z.: Adaptive grid job scheduling with genetic algorithms. Future Gener. Comput. Syst. 2, 151–161 (2005)CrossRefGoogle Scholar
  23. 23.
    Aggarwal, M., Kent, R.D., Ngom, A.: Genetic algorithm based scheduler for computational grids. In: Proceedings of the 19th Annual International Symposium on High Performance Computing Systems and Applications (HPCS 2005), May 2005Google Scholar
  24. 24.
    Song, S., Kwok, Y., Hwang, K.: Security-driven heuristics and a fast genetic algorithm for trusted grid job scheduling. In: Proceedings of 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2005), April 2005Google Scholar
  25. 25.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks (Perth, Australia), IEEE Service Center, Piscataway, NJ (1995 in press)Google Scholar
  26. 26.
    Zhang, L., Chen, Y., Sun, R., Jing, S., Yang, B.: A task scheduling algorithm based on PSO for grid computing. Int. J. Comput. Intell. Res. 4(1), 37–43 (2008)CrossRefGoogle Scholar
  27. 27.
    Liu, H., Abraham, A., Hassanien, A.E.: Scheduling jobs on computational grids using a fuzzy particle swarm optimization algorithm. Future Gener. Comput. Syst. 26, 1336–1343 (2010)CrossRefGoogle Scholar
  28. 28.
    Izakian, H., Ladani, B.T., Abraham, A., Snasel, V.: A discrete particle swarm optimization approach for grid job scheduling. Int. J. Innovative Comput. Inf. Control 6(9), 4219–4233 (2010)Google Scholar
  29. 29.
    Zhang, Y.-Y., Inoguchi, Y., Shen, H.: A dynamic task scheduling algorithm for grid computing system. In: Cao, J., Yang, L.T., Guo, M., Lau, F. (eds.) ISPA 2004. LNCS, vol. 3358, pp. 578–583. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. 30.
    Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: IEEE International Conference on Systems, Man, and Cybernetics, vol. 5 (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lyes Bouali
    • 1
  • Karima Oukfif
    • 2
    • 3
  • Samia Bouzefrane
    • 4
  • Fatima Oulebsir-Boumghar
    • 3
  1. 1.LARI LaboratoryUMMTOTizi OuzouAlgeria
  2. 2.Compute Science DepartmentUMMTOTizi OuzouAlgeria
  3. 3.LRPE LaboratoryUSTHBBab EzzouarAlgeria
  4. 4.CEDRIC LaboratoryCNAMParisFrance

Personalised recommendations