Advertisement

Stochastic Buildings Generation to Assist in the Design of Right to Build Plans

  • Mickaël Brasebin
  • Julien Perret
  • Romain Reuillon
Chapter
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)

Abstract

The design of documents impacting potential new constructions, such as Right to Build plans, is a complex issue. New tools need to be proposed in order to systematically assess the impact of regulations on the building potential of the concerned areas. Furthermore, it is often not directly the morphology of new constructions that administrations and citizens would like to regulate but their properties with regard to other phenomena (solar energy potential, etc.). In order to tackle these issues, we propose in this article to explore building configurations and regulations using a stochastic building generator and a workflow engine. The workflow we propose for such an exploration will produce important amounts of data that we intend to release as OpenData in order for administrations, urban planners and citizens to be able to freely visualize and collectively choose the regulations that best suit their territory. Such amount of 3D geographical data also suggests new issues in geovisualization.

Keywords

Utility Function Pareto Front Geographic Environment Exploration Tool Inverse Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partially funded by the FEDER e-PLU projet (www.e-PLU.fr) and the Île-de-France Région.

References

  1. Averkiou, M., Kim, V., Zheng, Y., & Mitra, N. J. (2014). Shapesynth: Parameterizing model collections for coupled shape exploration and synthesis. Computer Graphics Forum (Special issue of Eurographics 2014).Google Scholar
  2. Bao, F., Yan, D. -M., Mitra, N. J., & Wonka, P. (2013). Generating and exploring good building layouts. ACM Transactions on Graphics, 32(4).Google Scholar
  3. Brasebin, M. (2014). Les données géographiques 3D pour simuler l’impact de la réglementation urbaine sur la morphologie du bâti. Ph.D. thesis, Université Paris-Est.Google Scholar
  4. Brasebin, M., Perret, J., & Haëck, C. (2011). Towards a 3d geographic information system for the exploration of urban rules: application to the french local urban planning schemes. In 28th urban data management symposium (UDMS 2011).Google Scholar
  5. Coors, V., Hünlich, K., & On, G. (2009). Constraint-based generation and visualization of 3d city models. In J. Lee & S. Zlatanova (Eds.), 3D geo-information sciences (pp. 365–378)., Lecture notes in geoinformation and cartography Berlin Heidelberg: Springer.Google Scholar
  6. Covadis (2012). Standard de données covadisplan local d’urbanisme—plan d’occupation des sols plu et pos - version 2. Technical report, Commission de validation des données pour l’information spatialisée.Google Scholar
  7. El Makchouni, M. (1987). Un système graphique intelligent d’aide à la conception des plans d’occupation des sols: Sygripos. In 12th Urban Data Management Symposium.Google Scholar
  8. Frazer, J. (1995). An evolutionary architecture. Architectural Association: Themes Series.Google Scholar
  9. Green, P. J. (1995). Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika, 82(4), 711–732.CrossRefGoogle Scholar
  10. Gröger, G., & Plümer, L. (2012). Citygml—interoperable semantic 3d city models. ISPRS Journal of Photogrammetry and Remote Sensing, 71, 12–33.CrossRefGoogle Scholar
  11. He, S., Perret, J., Brasebin, M., & Brédif, M. (2014). A stochastic method for the generation of optimized building-layouts respecting urban regulation. In ISPRS/IGU Joint international conference on geospatial theory, processing, modelling and applications 2014, Advances in spatial data handling and analysis—Select Papers from the 16th IGU Spatial Data Handling Symposium.Google Scholar
  12. INSPIRE. (2009). D2.8.I.6 INSPIRE Data specification on cadastral parcels—Guidelines. Technical report.Google Scholar
  13. Kämpf, J. H., Montavon, M., Bunyesc, J., Bolliger, R., & Robinson, D. (2010). Optimisation of buildings’ solar irradiation availability. Solar Energy, 84(4), 596–603.CrossRefGoogle Scholar
  14. Kleiman, Y., Fish, N., Lanir, J., & Cohen-Or, D. (2013). Dynamic maps for exploring and browsing shapes. Computer Graphics Forum, 32(5).Google Scholar
  15. Laurini, R., & Vico, F. (1999). 3d symbolic visual simulation of building rule effects in urban master plans. In R. Shibasaki, & Z. Shi (Eds.) The second international workshop on Urban 3D/Multi-Media Mapping (UM3’99) (pp. 33–40).Google Scholar
  16. Michalewicz, Z. (1994). Evolutionary computation techniques for nonlinear programming problems. International Transactions of Operational Research, 1, 223–240.CrossRefGoogle Scholar
  17. Müller, P., Wonka, P., Haegler, S., Ulmer, A., & Van Gool, L. (2006). Procedural modeling of buildings. ACM Transactions on Graphics, 25(3), 614–623.CrossRefGoogle Scholar
  18. Murata, M. (2004). 3D-GIS application for urban planning based on 3D city model. In 24th Annual ESRI International User Conference (pp. 9–13).Google Scholar
  19. Papamichael, K. M., & Protzen, J. P. (1993). The limits of intelligence in design. In Focus Symposium on “Computer-Assisted Buildong Designs Systems”, of the Fourth International Symposium on System Research, Informatics and Cybernetics, Baden-Baden, Germany.Google Scholar
  20. Parish, Y. I. H., & Müller, P. (2001). Procedural modeling of cities. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, SIGGRAPH ’01 (pp. 301–308). New York, NY, USA: ACM.Google Scholar
  21. Perret, J., Curie, F., Gaffuri, J., & Ruas, A. (2010). A multi-agent system for the simulation of urban dynamics. In 10th European Conference on Complex Systems (ECCS’2010).Google Scholar
  22. Reuillon, R., Schmitt, C., De Aldama, R., & Mouret, J.- B. (2015). A new method to evaluate simulation models: the Calibration Profile (CP) algorithm a new method to evaluate simulation models: The Calibration Profile (CP) Algorithm. Journal of Artificial Societies and Social Simulation, 18(1). http://jasss.soc.surrey.ac.uk/18/1/12.html.
  23. Ruas, A., Perret, J., Curie, F., Mas, A., Puissant, A., & Skupinski, G., et al. (2011). Conception of a gis-platform to simulate urban densification based on the analysis of topographic data. In A. Ruas (Ed.), Advances in Cartography and GIScience (Vol. 2, pp. 413–430), volume 6 of Lecture Notes in Geoinformation and Cartography Berlin, Heidelberg: Springer.Google Scholar
  24. Salamon, P., & Sibani, P. (2002). Frost, R. Selecting the Schedule, 13, 89–98.Google Scholar
  25. Talton, J. O., Lou, Y., Lesser, S., Duke, J., Měch, R., & Koltun, V. (2011). Metropolis procedural modeling. ACM Transactions on Graphics 30(2).Google Scholar
  26. Turkienicz, B., Goncalves, B., & Grazziotin, B. P. (2008). Cityzoom: A visualization tool for the assessment of planning regulations. International Journal of Architectural Computing, 6(1), 79–95.CrossRefGoogle Scholar
  27. Vanegas, C. A. (2013). Modeling the appearance and behavior of urban spaces. Ph.D. thesis, Purdue University.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mickaël Brasebin
    • 1
  • Julien Perret
    • 1
  • Romain Reuillon
    • 2
  1. 1.Université Paris-EST, IGN, COGITSaint-mandéFrance
  2. 2.Institut des Systèmes Complexes Paris Ile-de-FranceParisFrance

Personalised recommendations